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Abstract 

This paper is concerned with the problem of finding the minimax estimators of 
the scale parameter θ in a family of transformed chi-square distributions, under 
asymmetric squared log error (SLE) and modified linear exponential (MLINEX) 
loss functions, using the Lehmann Theorem [2]. Also we show that the results of 
Podder et al. [4] for Pareto distribution are a special case of our results for this 
family of distributions. 
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1. Introduction 

In this paper, the minimax estimators of the scale 
parameter θ  in a family of transformed chi-square 
distributions are derived under two asymmetric loss 
functions, square log error loss (SLE) and modified 
linear exponential (MLINEX). We use the following 
Theorem, due to Lehmann [2] to show that the 
estimators for scale parameter θ  in this family of 
distributions are minimax. 

Brown [1] proposed a new loss function for scale 
parameter estimation. See also Pal and Ling [3]. This 
loss that is called squared log error loss is 

2
2( , ) (ln ln ) ln ,L δθ δ δ θ

θ
⎛ ⎞= − = ⎜ ⎟
⎝ ⎠

 (1.1) 

which is balanced and lim ( , )L θ δ = ∞  as 0δ →  or 
[1]. This loss is not always convex, it is convex for ∞

eδ
θ
≤  and concave otherwise, but its risk function has a 

unique minimum w.r.t. δ . 
Podder [5] introduced a modified linear exponential 

(MLINEX) loss function as 

( , ) ln 1
c

L cδ δθ δ ω
θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

; 

                                               0, 0,c ω≠ >  (1.2) 

which is asymmetric one. If 1δ
θ
= , then ( , ) 0,L θ δ =  

writing ,R δ
θ

=  the relative error  is minimized at ( )L R

1R = . If we write ln ln ln ,D R δ θ= = −  then  
can be expressed as the same form of LINEX loss 

( )L R
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( )( , ) ( ) 1L e λ δ θθ δ κ λ δ θ−⎡ ⎤= − −⎣ ⎦− ; 

                                              0, 0λ κ≠ > . (1.3) 

 
Theorem 1.1.  ([2]) Let { };Fθτ θ= ∈Θ  be a family of 
distribution functions and  be a class of estimators of D

.θ  Suppose that d  is a Bayes estimator 
concerning a prior distribution 

D∗ ∈
( )π θ  on the parameter 

space . If the risk function  on Θ ( , )R d constθ∗ = Θ , 
then d  is a minimax estimator for .∗ θ  

2. Family of Transformed Chi-Square 
Distributions 

Let  be a sequence of independent and 
identically distributed random variables from a one 
parameter exponential family 

1 2, ,...X X

( ) ( ) ( ) ( )( , ) .a x b c h xf x e η ηη + +=  (2.1) 

Rahman and Gupta [6] proved the following 
Theorem for the family of distributions (2.1). 

 
Theorem 2.1.  ([6]) In family (2.1), the function 

2 ( ) ( )a X b η−  has ( , 2)
2
jGamma  distribution if and only 

if 

2 ( ) ( ) ,
( )

c b j
b
η η
η

′
=

′
 (2.2) 

where  is positive and free from j .η  The one 
parameter exponential family of form (2.1) satisfying 
(2.2) is called the family of transformed chi-square 
distributions, provided  is a positive integer. j

For example the density of ( , )Gamma α β , for known 
,α  belongs to this family with 

( ) ,a X X=  1( ) ,b β
β

= −  ( ) ln ,c β α β= −  

22 ( ) ( ) ,Xa X b β
β

− =  2 ,j α=  

and also the ( )Pareto α  distribution belongs to this 
family with 

( ) ln ,a X X=  ( ) ,b α α= −  ( ) ln ,c α α=  

2 ( ) ( ) 2 ln ,a X b Xα α− =  2.j =  

From condition (2.2) we get 

1( ) ln ( ) .
2
jc bη η k= +  (2.3) 

Let ( ) 0bθ η= − >  and ,
2
jv =  then (2.3) reduces to 

1 1
1

( ) 2( ) .k kc ve b e eη η θ= − −  

Hence, the family (2.1) can be written as 
( ) ( )( ) ( )
1 1
( ) ( )( ) ( ) ,

a x a xc h x

b bh x ce e e e

η

η ηη

− −
⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=  

i.e. 
( )( ; ) ( ) ,v a xf x c x e θθ θ −=  (2.4) 

where 1( )( ) h x kc x e += , ( ) 0bθ η= − >  and 0
2
jv = > . 

Also note that 2 ( ) ( ) 2 ( )a X b a Xη θ− =  has 
1( , )
2

Gamma v  distribution or 1( ) ( , )a X Gamma v
θ

≈ . 

Now, if 1 2, ,..., nX X X  is a sample of size n  from 
distribution (2.4), then the joint density of 1,X  

2 ,..., nX X  is given by 

1

( )

( ; ) ( , ) , 0

n

i
i

a x
nvf x c x n e

θ

θ θ θ=

− ∑
= >  (2.5) 

where 
1

( , ) ( )
n

i
i

c x n c x
=

=∏  and ( )nS X =
1

( )
n

i
i

a X
=
∑  

1( , )Gamma nv
θ

≈ . 

3. Main Results 

Theorem 3.1.  Let 1 2, ,..., nX X X  be a sample of size 
 from distribution (2.4). If n θ  has Jeffrey’s non-

informative prior density 1( ) ; 0π θ θ
θ

∝ > , then 

(a)  
( )nv

MSLE
n

e
S

πδ
Ψ

=  is the minimax estimator of 

parameter θ  under squared log error loss of the type 
2

2( , ) (ln ln ) ln ,L δθ δ δ θ
θ

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 where ( )( )
( )
αα
α
′Γ

Ψ =
Γ

, 

(b)  

1

( ) 1
( )

c

MMl
n

nv
nv c S

πδ
⎛ ⎞Γ

= ⎜ ⎟Γ −⎝ ⎠
, is the minimax esti-

mator of parameter θ  under MLINEX loss function of 
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the type ( , ) ln 1 ; 0, 0
c

L cδ δθ δ ω ω
θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞= − − >⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

c ≠ , 

(c)  2
MQl

n

nv
S

πδ −
=  is the minimax estimator of 

parameter θ  under quadratic loss function of the type 
2

( , )L θ δθ δ
θ
−⎛= ⎜

⎝ ⎠
⎞
⎟ , where . 

1

( )
n

n i
i

S a X
=

= ∑
 

Remark 3.1.  In order to derive the results for Pareto 
distribution by putting  ( ) ln ,a X X= (.) ,b α= −  

2 ( ) (.) 2 ln ,a X b Xα− =  1
2
jv = = , the minimax estima-

tors for θ α=  under the above loss functions are 

i.  
( )

1

,
ln

n

MSLE n

i
i

e

X

πδ
Ψ

=

=

∑
 where ( )( )

( )
nn
n
′Γ

Ψ =
Γ

=  

( ) 1

0

ln
ln ( ) ,

( )

n yy y ed n d
dn n

− −∞

Γ =
Γ∫ y  

ii.  

1

1

( ) 1
( ) ln

c

MMl n

i
i

n
n c X

πδ

=

⎛ ⎞Γ
= ⎜ ⎟Γ −⎝ ⎠ ∑

 and MQl
πδ =  

1

2

ln
n

i
i

n

X
=

−

∑
. 

These results for MLINEX and quadratic loss 
functions are conformed to the results of Podder et al. 
[4]. Hence, our results for these three loss functions in 
the family of transformed chi-square are general and 
containing the former works in this field. 

 

Remark 3.2.  Putting 1( ) , (.) ,a X X b
β

= =−   2 ( ) (.)a X b−

2 ,X
β

=  
2
jv α= = , the minimax estimators for 1θ

β
=  

in Gamma distribution with 11( ; )
( )

f x x α
αβ

β α
−=

Γ
 

exp x
β

⎛ −
⎜
⎝ ⎠

⎞
⎟  under above loss functions are 

i.  
( ) ( )

1

1 ,
n n

MSLE n
n

i
i

e e
n XX

α α
πδ

Ψ Ψ

=

= =

∑
 and 

1

2
MQl n

i
i

n

X

π αδ

=

−
=

∑
 

2 1

n

n
n X
α −

= , 

ii.  

1

1

1

( )
( )( ) 1 1

( )

c

c

MMl n
n

i
i

n
n cn

n c n XX

π

α
ααδ

α
=

⎛ ⎞Γ
⎜ ⎟Γ −⎛ ⎞Γ ⎝ ⎠= =⎜ ⎟Γ −⎝ ⎠ ∑

. 

 
Proof.  Part (a): It is enough to show that the estimator 

( )nv

MSLE
n

e
S

πδ
Ψ

=  is the Bayes estimator for parameter θ , 

in transformed chi-square family as the form (2.5), with 

constant risk under the prior distribution 1( )π θ
θ

∝ ; 

0θ > . 
The posterior distribution of θ  given X =  

( )1,..., nX X  is 

( ) ( ) 1

;
( )

n
nv Snv

nS e
x

nv

θθ
π θ θ

−−

0= ≥
Γ

, (3.1) 

which is 1,
n

Gamma nv
S

⎛
⎜
⎝ ⎠

.
⎞
⎟  The Bayes estimator for θ  

under squared log error (1.1) is 

( )exp lnBSLE E Xπδ θ⎡ ⎤= ⎣ ⎦ , (3.2) 

where 

( )

( )

( )

[ ]

1

0

1

0

1 1

0 0

ln ln
( )

1 ln ln
( )

(using )

1 ln ln
( )

1 ( ) ln ( ) ( ) ln .
( )

n
nv Snv

n

nv y
n

n

nv y nv y
n

n n

S e
E X d

nv

y S y e dy
nv

S y

y y e dy S y e dy
nv

nv S nv nv S
nv

θθ
θ θ θ

θ

−−∞

∞
− −

∞ ∞
− − − −

⎡ ⎤ =⎣ ⎦ Γ

⎡ ⎤
= −⎢ ⎥Γ ⎣ ⎦

=

⎡ ⎤
= −⎢ ⎥Γ ⎣ ⎦

′= Γ − Γ = Ψ −
Γ

∫

∫

∫ ∫

 (3.3) 

Hence, we have 

( )

( )
( )

1 ( )

exp ln

exp ( ) ln

( ) .

BSLE

n

nv
nv

n
n

E X

nv S

eS e
S

πδ θ

Ψ
− Ψ

⎡ ⎤= ⎣ ⎦

= Ψ −

= =

 (3.4) 
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Therefore, it is enough to show that the risk of BSLE
πδ  

is constant. 

[ ]

2

2

( ) ln ln

ln 2 ln ln ln .

BSLE BSLE

BSLE BSLE

R E

E E

π

π π

θ δ θ

δ θ δ θ

⎡ ⎤= −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦

 (3.5) 

Since, the distribution of 
1

( ) ( )
n

n
i

S X a X
=

= ∑ i  is 

1( , )Gamma nv
θ

, then 

[ ]

( )

ln ( ) ln

( ) ( ) ln ln ,

BSLE nE E nv S

nv nv

πδ

θ θ

⎡ ⎤ = Ψ −⎣ ⎦

= Ψ − Ψ − =
 (3.6) 

using the relation ,nS yθ =  we have 

[ ]

[ ]

1

0

1

0

ln ln ( )
( )

ln ln ( ) ln ,
( )

n

nv
Snv

n n n n

nv y

E S S S e dS
nv

y ey dy nv
nv

θθ

θ θ

∞
−−

∞ − −

=
Γ

= − = Ψ −
Γ

∫

∫
 (3.7) 

and also we get 

[ ]

[ ] [ ]

2 2

22

ln ( ) ln

( ) 2 ( ) ln ln

BSLE n

n n

E E nv S

nv nv E S E S

πδ⎡ ⎤ = Ψ −⎣ ⎦

= Ψ − Ψ + .
 (3.8) 

But 

[ ]

2 1

0

2 1

0

2 2

(ln )( )
( )

(ln ) ( )
( )

ln ( ).

nv y

nv y

y y env dy
nv

y y e nv dy
nv

E Y nv

∞ − −

∞ − −

′Ψ =
Γ

− Ψ
Γ

= −Ψ

∫

∫  (3.9) 

This implies that . 
Using this fact we have 

[ ]2 2ln ( ) ( )E Y nv nv′= Ψ +Ψ

[ ]2 2

2

ln ( ) ( )

2 ln ( ) (ln ) .

nE S nv nv

nvθ θ

′= Ψ +Ψ

− Ψ +
 (3.10) 

Substituting the relations (3.7) and (3.10) in equation 
(3.8) we have 

2 2ln ( ) (ln )BSLEE nvπδ θ′⎡ ⎤ = Ψ +⎣ ⎦ . 

Also, by replacing the relations (3.7) and (3.10) in 

(3.8) we have gotten 
2

( ) ln ln ( )BSLE BSLER E πθ δ θ ′⎡ ⎤= − = Ψ⎣ ⎦ nv , (3.11) 

which is constant w.r.t. θ , as v  and  are known and 
independent of 

n
θ . So from the Lehmann’s Theorem it 

follows that MSLE
πδ =

( )

,
nv

n

e
S

Ψ

 is the minimax estimator 

of the scale parameter θ  in a family of transformed chi-
square distributions under the square log error loss 
function (1.1). 
 

Part (b): The Bayes estimator for θ  under the 
MLINEX loss function (1.2) is 

1

( )c c
BML E Xπδ θ

−− ,⎡ ⎤= ⎣ ⎦  (3.12) 

where 

( )

1

0

( )
( )

( )

( ) .
( )

nSnv nv
c c n

c
n

S e
E X d

nv

nv c S
nv

θθ
θ θ θ

−−
∞− −=

Γ

Γ −
=

Γ

∫
 

Using the relation (3.12) gives 

1

( ) 1
( )

c

BML
n n

nv K
nv c S S

πδ
⎛ ⎞Γ

= ⎜ ⎟Γ −⎝ ⎠
= , (3.13) 

where 

1

( )
( )

cnvK
nv c

⎛ ⎞Γ
= ⎜ ⎟Γ −⎝ ⎠

 and  is the 

complete sufficient statistics for 
1

( )
n

n
i

S a x
=

= ∑ i

θ . Now the risk 
function of BML

πδ  under the MLINEX (1.2) is given by 

( )

( ) ( )

( ) ,

1 ln ln 1 .

BML BML

c

BML BMLc

R E L

E cE c

π

π π

θ θ δ

ω δ δ θ
θ

⎡ ⎤= ⎣ ⎦

⎧ ⎫= − + −⎨ ⎬
⎩ ⎭

 (3.14) 

But 

( )

( ) ,
( )

c
c cc

BML n
n

c c

KE E K E S
S

nv cK
nv

πδ

cθ θ

−⎡ ⎤
⎡ ⎤ = =⎢ ⎥⎣ ⎦

⎣ ⎦

Γ −
= =

Γ

 (3.15) 

and using the relation (3.13) gives 
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Figure 1.  Graphs of MSEs for different values of n under 
MML, MSLE, MQL and MLE when θ = 1, c = 2 for known 
values β = 1 & 2. 
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Figure 3.  Graphs of MSEs for different values of  under 
MML, MSLE, MQL and MLE when θ = 1, c = −1 for known 
values β = 1 & 2. 

n

 
( )ln ln ln ln

ln ln ( ).

BML n
n

KE E K E
S

K nv

πδ

θ

⎡ ⎤
⎡ ⎤ = = −⎢ ⎥⎣ ⎦

⎣ ⎦

= + −Ψ

S

nv ⎤⎦

 (3.16) 

By substituting the relations (3.15) and (3.16) in 
(3.14) we have 

( ) ln ( )c
BMLR K cθ ω −⎡= + Ψ⎣ , (3.17) 
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Figure 2.  Graphs of MSEs for different values of  under 
MML, MSLE, MQL and MLE when θ = 1, c = −2 for known 
values β = 1 & 2. 
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Figure 4.  Graphs of MSEs for different values of  under 
MML, MSLE, MQL and MLE when θ = 2, c = −2 for known 
values β = 1 & 2. 

n

 
which is constant w.r.t. θ , as v  and  are known and 
independent of 

n
θ . 

So from the Lehmann’s Theorem it follows that 
1

( ) 1
( )

c

MML
n n

nv K
nv c S S

πδ
⎛ ⎞Γ

= ⎜ ⎟Γ −⎝ ⎠
=  is the minimax estima-

tor of the scale parameter θ  in this family under 
MLINEX loss function. 
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Figure 5.  Graphs of MSEs for different values of  under 
MML, MSLE, MQL and MLE when θ = 2, c = −5 for known 
values β = 1 & 2. 

n

 
Part (c): Proof of this part is very similar to parts (a) 

and (b) and it’s omitted. 

4. Empirical Study 

Mean Square Errors (MSEs) are considered to 
compare the different estimators of the parameter 

βθ α −=  ( β  known), in Weibull distribution 

1( , ) exp xf x x
β

β βα βα

The estimated values of the parameter θ  and MSEs 
of the estimators are computed by the Monte-Carlo 
simulation method using the Weibull distribution. It is 
seen that for small sample size  and  
minimax estimators for quadratic loss appear to be 
better than the minimax estimators under MLINEX and 
squared log error loss functions, and the minimax 
estimator under MLINEX loss is better than the 
minimax estimator under squared log error loss in terms 
of MSE. But for 

25n < 0,c >

25n <  and  the minimax 
estimator for 

0,c <
θ  under the squared log error is better 

than the minimax estimator under MLINEX loss 
function. In both cases the minimax estimator under 
quadratic loss has the least MSE. 

For the large sample size  estimators have 
approximately the same MSEs. 

25,n >

The results for Weibull distribution with different 
values 1,2θ =  and 5, 1, 2,2c = − − −  are demonstrated in 
Figures 1-5. 
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