
Journal of Sciences, Islamic Republic of Iran 17(3): 249-251 (2006) http://jsciences.ut.ac.ir 
University of Tehran, ISSN 1016-1104 

Estimation of the Survival Function for Negatively 
Dependent Random Variables 

 
H. Doosti1,* and H. Zarei2 

 
1 Department of Statistics, School of Mathematical Sciences, Ferdowsi University,  

P.O. Box 1159-91775, Mashhad, Islamic Republic of Iran 
2 Department of Mathematics, Faculty of Sciences, Zabol University, Zabol, Islamic Republic of Iran 

 
Abstract 

Let  be a stationary sequence of pair wise negative quadrant 
dependent random variables with survival function 

{ , 1}nX n ≥

( ) [ ]F x P X x= > . The 
empirical survival function ( )nF x  based on 1 2, ,..., nX X X  is proposed as an 
estimator for ( )nF x . Strong consistency and point wise as well as uniform of 

( )nF x  are discussed. 
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1. Introduction 

Suppose that { ,  is a sequence of random 
variables with distribution function 

1}nX n ≥
( )F x , or 

equivalently, survival function ( ) [ ]F x P X x= > . An 
estimator of ( )F x  been studied by Bagai and Prakasa 
Rao [1] for the case where { }, 1nX n ≥  is for associated 
random variables. 

Consider the estimator ( )nF x  defined by 
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Definition 1.  The random variables 1,..., nX X  are said 
to be negatively dependent (ND) if we have 
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for all 1,..., nx x R∈ . An infinite sequence { }, 1nX n ≥  
is said to be ND if every finite subset 

1
,...,

ni iX X  is ND. 

We propose { ,  is a sequence of negatively 
dependent random variables and 

1}nX n ≥

( )nF x  as an estimator 
for ( )F x  and study it. In this paper we discuss the 
strong consistency, point wise and uniform of ( )nF x . 
These results are useful in the study of kernel-type 
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density and failure rate estimators of the unknown 
density and failure rate function. In fact we extend 
Bagai and Prakasa Rao [1] to negatively dependent case. 

The following lemma was proved by Bozorgnia, 
Patterson and Taylor [2]. We use it for obtaining the 
main result in the next section. 
 
Lemma 1.1.  ([1]) Let { }, 1nX n ≥  be a sequence of 

ND random variables and {  be a sequence of 
Borel functions all of which are monotone increasing 
(or all are monotone decreasing). Then {  
is a sequence of ND random variables. 

}

}

, 1nf n ≥

( ), 1n nf X n ≥

Throughout the paper C  will denote a positive 
constant not necessarily the same from one step to 
another. 

2. The Empirical Survival Function 
First, we present a bound for the moment of order  

of the sum of N  random variables which depends on 
the second moment and mixing coefficients. This bound 
constitutes the basis of the main results of this paper–
Theorems 2.1 and 2.2. This is a Rosenthal-type 
inequality. The following lemma was proved by Rivaz 
[4] theorem 7.2.2. page 32. 

p

 
Lemma 2.1.  Let 1,..., nξ ξ  be a sequence of ND 
identically random variables such that ( ) 0iξ =E , 
|| ||i Mξ ∞ < . Then there exist  such that ( )C p
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Theorem 2.1.  Let  be a stationary sequ-
ence of  random variables with bounded continuous 
density for 

{ , 1}nX n ≥
ND

1X . Then for some , there exists a 
constant  such that, for every 

1r >
0C > 0ε > , 

2sup [| ( ) ( ) | ] r r
n
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Proof.  Using Markov inequality, we get that for every 

0ε > , 
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to complete the proof, it is sufficient to estimate 
. Denote 2

1| ( ) | rn
i i iE Y EY= −∑ i iY EY iξ = − . Note that 

|| || 2iξ ∞<  and 0iEξ = . In view of  property of 
the sequence { ,  and the monotonicity of the 
function , Lemma 1.1 follows that the sequence 

ND
1}nX n ≥

iY
{ , 1}n nξ ≥  is also sequence of ND  random variables. 
Hence applying the Lemma 2.1 we have 

2

1

| ( ) |
n

r
i i

i

E Y EY Cn −

=

− ≤∑ .r  (2.2) 

By substituting (2.2) in (2.1), we obtain the desired 
result. 
 
Corollary 2.1.  Under the conditions of Theorem 2.1 for 
every x , 

( ) ( ) . . .nF x F x a s as n→ →∞  

 
Proof.  For  observe that 1r >

2
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The result then follows by using the Borel-Contelli 
Lemma. Next we obtain a version of Glivenko-Cantelli 
Threorem valid for ND random variables. The proof 
follows along the lines of analogous result for asso-
ciated of random variables (Bagai and Prakasa Rao [1]). 
 
Theorem 2.2.  Let  be a stationary se-
quence of ND  random variables satisfying the 
conditions of Theorem 2.1. Then for any compact subset 

{ , 1}nX n ≥

J R⊂ , 

sup[ | ( ) ( ) |: ] 0 .nF x F x x J a s as n− ∈ → →∞ . 

 
Proof.  Let 1K  and 2K  be chosen such that 

1 2[ , ]J K K⊂  into  sub-intervals of length nb 0nδ →  
where { }nδ  is chosen such that  

1 .r
n

n

nδ − − < ∞∑  (2.3) 
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such a choice of { }nδ  is possible. For instance, choose 

n n θδ −=  where 0 r 1θ< < − . Note that 1.n nb Cδ −≤  
Let , , where , , 1( , )nj n j n jI x x += 1,..., nj b N= =

21 ,1 , 2 , 1... ,n n n NK x x x K+= < < < =  

with 

, 1 ,n j n j nx x δ+ − ≤    for 1 .  j N≤ ≤

Then for njx I∈ ,  we have 1,2,...,j = N

, 1 ,( ) ( ) (n j n jF x F x F x+ ≤ ≤ ),  

and 

, 1 ,( ) ( ) (n n j n n n jF x F x F x+ ≤ ≤ ).  

Hence 

, 1 , 1 , 1[ ( ) ( )] [ ( ) ( )n n j n j n j ]F x F x F x F x+ + +− + −  

                 ( ) ( )nF x F x≤ −  
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Now by the mean value theorem for ,n jx u x∗< <  
we have 

, ,

,
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Since f , the density of 1X  is bounded by the 

hypothesis, it follows that there exists a constant  
such that  

0C >

, , 1| ( ) ( ) | , | ( ) ( ) | ,n j n n j nF x F x C F x F x Cδ δ+− ≤ − ≤  

for 1 j N≤ ≤  and .njx I∈  Then for 0ε > , choose 
( )n n ε=  such that 
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From (2.3) and (2.4), we get, for ( )n n ε≤ , 
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The result follows by using (2.5) and Borel-Cantelli 
Lemma. 
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