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Abstract 

This paper deals with a theoretical mathematical analysis of one-dimensional 
solidification problem, in which kinetic undercooling is incorporated into the This 
temperature condition at the interface. A model problem with nonlinear kinetic 
law is considered. We prove a local result intimate for the uniqueness of solution 
of the corresponding free boundary problem. 
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Introduction 

It is well known that in many industrial areas, the 
solidification process plays a significant role. Mathe-
matical models of solidification including interface 
kinetics effects have been considered for quite some 
time (see [1], and references therein). This class of free 
boundary problems, which arises in a number of 
physical situations, is that of on equilibrium problems, 
in which the phase - change temperature is dependent 
on the velocity of the front at which the phase-change 
occurs (for more physical problems, see [3-7]). Here, 
we study a model problem with nonlinear kinetic law at 
the interface in the one-dimensional case.  Specifically, 
let the curve with s(0)=b(0<b<1) be defined as the 
interface that separates the liquid and solid phases. With 
u denoting temperature (scaled so that is vanishes at 
equilibrium), we may write the system of equations as 

xxlt uKu =  in { },0),(0),(1 TttsxtxQ ≤<<<=  (1.1) 

xxst uKu =  in { },0),(0),(1 TttsxtxQ ≤<<<=  (1.2) 

and on the interface )(tsx =  as 

( )( )fVguu 121 == , (1.3) 

( )( )tVgKuKu xx 2=− −+ , (1.4) 

( ) bs =0 , 10 << b , (1.5) 

where Kl and Ks are thermal diffusivities of a liquid and 
a solid respectively, L > 0 is the latent heat and the 
superscripts + and – denote, respectively the right-hand 
and left-hand limits with respect to the special variable 
x. These equations are subject to the initial and boun-
dary conditions 
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( ) ( ) bxxxu ≤≤= 00, 1ϕ , (1.6) 

( ) ( ) 10, 2 ≤≤= xbxxu ϕ , (1.7) 

( ) ( ) ( 2,1,0,l )=≥=− ittftiu i  (1.8) 

where 

( ) ( )
dt

tdstV =  (1.9) 

is the propagation velocity of the free boundary. The 
free boundary problem considered here was formulated 
in [1], where reduction the problem to an integral 
equation was given. In the context of solid fuel 
combustion, s(t) represents the boundary between the 
unburnt and burnt material, and , are the 
nondimensionalized temperature in the unburnt and 
burnt material respectively, (see [3-7] and references 
therein). The temperature at the free boundary controls 
its velocity . The heat exchange 
between the unburnt  and burnt material is 
modeled by the boundary condition in (1.4) which, in 
principle, may be nonlinear. 

21,uu

))),((()( 1
1

1 ttsugtV −=
))(( tsx <

Main Results 

Theorem. Consider the problem (1.1)-(1.9). Suppose 
that the kinetic function and initial and boundary data 
satisfy the assumption )()( 31 HH −  in [1]. Then the 
problem (1.1)-(1.9) has not more than one solution. 

To prove uniqueness for σ<t  suppose that 
 is another solution of (1.1)-(1.9) for 002010 ),,( suuu =

σ<t  and  is another solution 
of integral equations (26) and (27) in [1]. It suffices to 
prove uniqueness, for any 

Ttvtvtv ))(),(()( 02010 =

σσ < . 
 
Let 

( ) }..,{ 0
0

tbulMMaxM
t

ν
σ≤≤

=  

where M  introduced in section 4.2 in [1], and let be 
any positive number satisfying 
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where the constants  and , i=2,3,…,7 are simple 

combination of 

iC iD

.,,,,,1,, '
22

' KMMMM
b

bπ  Then by the 

same calculations in [1] which were used to prove that 
 maps  into itself (where T  and  

introduced in subsection 4.2 in [1]) and is a contraction 
one shows that T  maps 

T σ,MB σ,MB

σ,MB  into itself and is a 

contraction. Hence, there exists at most one fixed point 
of  in T σ,MB 0 tv=. It follows that  for )()(tv

σ≤≤ t0 , where  is solution of integral equations 
(26) and (27) in [1]. Hence also 

)(tv
)()( 0 tsts =  

),(),(, 0 txutxu =  if σ≤≤ t0 ,  and )(0 tsx ≤≤
.1)( ≤≤ xts  We next consider the system (1.1)-(1.9) for 

σ>t , i.e. (1.1)-(1.5), (1.8), (1.9) are considered for 
σ>t  (instead of ) where as (1.6), (1.7) are 

replaced by 
0≥t

),(),( 11 σσ xuxu =  for )(0 σsx ≤≤ , 

),(),( 22 σσ xuxu =  for 1)( << xs σ . 
This problem can again be transformed into integral 

equations (26), (27) in [1] extend to the present integral 
equation provided M  is replaced by  where 0M

))(()(.. 10 tVgtVbulM
t σσ <<

=  

Similarly to section 4 in [1], we reduce the problem 
(1.1)-(1.9) for  in the interval 00 , su σσ <≤ t  to an 

integral equation. Since ),(),( 11 σσ xuxu = , =),(2 σxu  

),(2 σxu , the integral equation for and  
coincide. Repeating now the same argument as before 
we conclude that for 

)(tv )(0 tv

)()( 0 tvtv =  for any σ~  satisfying 
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}))(..,{( 000 tvbulMMaxM
t σσ ≤≤

=  

We can now proceed in the same manner as before in 
[2] step by step, nothing that in each step the time 
interval can be taken to be ε≥  where satisfies 
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where 

})(..,))(()(..{ 011 tvbultVgtVbulMaxM
tt σσσσ <<<<

=  

Having proved existence and uniqueness for all 
σ<t  where σ  is any positive number satisfying (36) 

in [1]. Let us stress that the previous proof (see (38), 
(39) in [1]) shows also the following: 

If instead of (1.1)-(1.9) for t > 0 we consider (1.1)-
(1.9) for λ>t , i.e., (1.1)-(1.5), (1.8), (1.9) hold for 

λ>t  and (1.6), (1.7) replaced by ( ) ),(, 11 λλ xuxu = for 
)(0 λsx <<  and ( ) ),(, 22 λλ xuxu =  for 1)( ≤< xs λ  

respectively, and if 

))(()( 1 λλ VgV , )(λs , 
)(

1
λs

 

are bounded independently of λ , then there exists a 
unique solution for the problem in an interval 

ελλ +≤≤ t , where ε  is some positive number 
independent of λ . 

Since for any solution of (1.1)-(1.9) the function s(t) 

is monotone non-decreasing, 
bs
1

)(
1

≤
λ

. To complete 

the proof of theorem it suffices to prove the following 
statement: 

For every  there exists an 00 >t 0>ε such that if the 
system (1.1)-(1.9) has a unique solution for all 0tt < , 
then it also has a unique solution for all ε+< 0tt  in 
view of the previous remarks it suffices to show: If 

( ) ( )tstxu ,,  is a solution of  (1.1)-(1.9) for all 0tt < , 
then for all 0>η  sufficiently small, the functions 

))(()(.. 010 ηη −− tVgtVbul , ( )η−0ts  (2.1) 

are bounded independently of η . If we prove that 

,)(.. ∞<tvbul  

then from (28) in [1] follows the boundedness of s(t) for 
0tt < . Consequently, if we prove (2.2) then the proof of 

theorem is completed. 
Proof of (2.2). We use for  the integral equation 

which corresponds to the system (1.1)-(1.9) in the 
interval 

)(tv

μμ <<− tt0  ( μ  sufficiently small) in [1]. 
Since 

)(),0(),(),0( 02020101 μμμμ −=−−=− tftutftu , 

the equations are 
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In section 4 in [1] we proved  and  are 
bounded functions, we obtain that 

)(1 tv )(2 tv

∞<
<<

)(..
00

tvbul
tt

 

therefore we established theorem. 
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