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Abstract 

In the present paper, among other results, a decomposition formula is given for 
the w-bounded continuous negative definite functions of a topological 
*-semigroup S with a weight function w into a proper H*-algebra A in terms of 
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author is also established. 
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Introduction 

In this work we introduce the notion of a negative 
definite function of a topological *-semigroup S into a 
proper H*-algebra A. Through a different method, 
among other results, we extend a result of K.Harzallah 
from the case of bounded continuous complex-valued 
negative definite functions to the case of w-bounded 
continuous negative-definite A-valued functions of S 
with a weight function w. It should be noted that the 
Harzallah’s argument heavily depends on the existence 
of a Haar measure on a topological group. We have also 
established our earlier conjecture in [14] even in a more 
general setting. 

This paper is organized as follows. The basic results 
on H*-algebra valued negative definite functions are 
given in section one. Section two is devoted to the study 
of both H*-valued negative definite and positive definite 
functions on weighted commutative topological semi-
groups. A Lévy-Khinchin formula for the H*-valued 
continuous negative definite functions on weighted 
foundation semigroups is given in this section.  

Preliminaries 

Throughout this paper, S will denote a locally 
compact, Hausdorff topological semigroup. A 
semigroup S is called a *-semigroup if there is a 
continuous mapping *:S→S such that (xy)*=y*x* and 
(x*)*=x for all ,x y S∈ . A function w on a topological 
*-semigroup S with an identity e such that ( ) 1w e = , 

, ,  ( ) 0w x ≥ *( ) ( )w x w x= ( ) ( ) ( )w xy w x w y≤
(x,y S)∈  is called a weight function on S . A complex-
valued function f on is called w -bounded if there 
exists  such that | (

S
0k > ) | ( )f x kw≤ x (x S)∈ . A 

nonzero mapping : Sχ → C  such that (xy)χ  

= (x) (y)χ χ  and *( ) ( )x xχ χ= (x,y S)∈  is called a 
-semicharacter on . A complex-valued function * S ϕ  

on a * -semigroup S  is called positive-definite if 

*

1 1
( )

n n

i j i j
i j

c c x xϕ
= =

≥∑∑ 0  
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for all choices from and from 
. For further information on positive definite 

functions we refer the reader to [3,4,13]. 

1 n{x , ,x } K S 1 n{c , ,c } K

�

Recall that an *H -algebra is a nonzero Banach 
algebra  whose underlying Banach space is a Hilbert 
space with an scalar inner product  which induces 
the norm 

A
, A〈 〉

.
A

on and for each A x in there is some A
*x  in  for which the mapping A *x x ya  (resp. 

*x yxa ) is the adjoint of the mapping x xya  (resp. 
x yxa ). An *H -algebra  is called proper if the 
only 

A
x A∈  for which xA = {0} is the zero element. 

Note that every *H -algebra with an identity defines a 
proper *H -algebra. Let (A) ={xy: x,y A} τ ∈ be its 
trace class, then it is well known that ( )Aτ  is a Banach 
algebra with respect to a norm (.)τ  which is related to 

the norm .
A

 by the identity 2*( )
A

a a aτ =  ( a A∈ ) 
(see [17]). There is a partial ordering defined on ( )Aτ  
by the requirement that a 0 if  for some 

. Also there is a trace tr defined on 
≥ *a b b=

b A∈ ( )Aτ  such 
that ( )tr a aτ=  if 0 and a ≥ *( )tr xy =  

. Note that | |*( ) , Atr y x x y= 〈 〉 (tr x x )τ≤  for all 
( )x Aτ∈ . 

A right Hilbert module H over A is called a Hilbert 
A-module if there exists a ( )Aτ -valued function ( ,  on 

with the following properties: 
)

H H×
(i)  for all (f+g,h) = (f,h) + (g,h) f,g,h .H∈  
(ii)  for all f,g*(f,g)  = (g,f) .H∈  
(iii) (f for all ,ga) =(f,g)a f,g H∈  and each a A∈ . 
(iv) For each non-zero f H∈  there exists a ≠ 0 in A 

such that *( , )f f a= a . 
(v) | ( , ) | ( , ) ( , )tr f g f f g gτ τ≤  for all f,g .H∈  
(vi) H is complete in the norm 

1/ 2 1/ 2( ( , )) ( , ) .f f f tr f fτ= =  
The function ( ,  is called a generalized scalar 

product. There is a linear structure on H such that H is 
an ordinary Hilbert space with respect the scalar product 

)

, ( , )f g tr g f〈 〉 =  ( f,g H∈ ) (see Theorem 1 of [17]). 
An A-linear operator on H is an additive mapping 

 such that  for all :T H H→ ( ) ( )T fa T f a=
f H∈ and ; T is called bounded if a A∈
Tf M f≤  for some  and all 0M ≥ f H∈ . Each 

bounded A-linear operator T is linear and its adjoint  
has the property that ( ,

*T
) ( , )Tf g f Tg=  for all f,g .H∈  

For more detail on proper *H -algebras we refer the 
reader to [6,17-19]. 

Let X be a nonempty set. A kernel 
: ( )X X Aϕ τ× →  of a proper *H -algebra A is called 

hermitian if *( , ) [ ( , )]x y y xϕ ϕ=  ( ,x y X∈ ), and is 
called positive definite if 

*

1 1
( , ) 0

n n

i i j
i j

a x xϕ
= =

≥∑∑  

for all subsets of A and 1{ , , }na aK 1{ , , }nx xK of X, and 
is called weakly positive definite if 

, 1
( , ) 0

n

j k i j
j k

c c s sϕ
=

≥∑  

for every choice of , n ∈� 1, , ns s S∈K , and 

1, , .nc c ∈K �   
If S is a *-semigroup then : (S A )ϕ τ→  is called 

positive definite if the kernel: *( , ) ( )x y xϕa y  
( ,x y S∈ ) is positive definite. A function : S Aϕ → is 
called weakly positive definite if the kernel: 

*( , ) ( )x y x yϕa ,( x y S∈ ) is weakly positive defi-
nite. It is obvious that every positive definite function is 
weakly positive definite, but the converse is false. For 
example, if S is any semigroup and 2 ( )A M= � , then 
the function ϕ form S into A given by 

1 0
( )

0 2
xϕ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

defines an A-valued weakly positive definite function, 
which is not positive definite. For if 

1 0
0

a
i
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

then  

* * * * 4
( ) ( )

0
i

a ss a a s s a
i

ϕ ϕ
−⎛ ⎞

+ = ⎜ ⎟
⎝ ⎠

 

which is not a positive element of  as 2 ( )M �
1
22 (5)−  

belongs to its espectrum. 
On a non-empty set X a kernel : ( )X X Aψ τ× →  is 

called negative definite if it is hermitian and 

*

1 1
( , ) 0

n n

i i j j
i j

a x x aψ
= =

≤∑∑  

for all subsets 1{ , , }nx xK  of X and of A 1{ , , }na aK
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with . A kernel 
1

0n
ii

a
=

=∑ : ( )X X Aψ τ× →  is called 

weakly negative definite if it ishermitian and 

, 1
( , ) 0

n

j k k j
j k

c c x xψ
=

≤∑  

for every choice of n ∈� , 1, , nx x X∈K , and 

 with . Note that a kernel 1, , nc c ∈K �
1

0n
ii

c
=

=∑ ψ  

on a nonempty set X is negative definite if and only if 
for every positive real number t, te ψ−  is positive 
definite (see Theorem 3.2.2 of [4]). 

If S is a *-semigroup, then a function : (S A )ψ τ→  
is called negative definite (respectively, weakly negative 
definite) if the kernel: *( , ) ( )x y x yψa , ( x y S∈ ) is 
negative definite (respectively, weakly negative 
definite). Note that if A has an identity then every 
negative definite function is also weakly negative 
definite but the converse is not true. A mapping 

: S Aγ → is called *-additive if it is hermitian and 
( ) ( ) ( )xy x yγ γ γ= +  for all , .x y S∈  For every a in a 

proper *H -algebra A we denote *1
2 (a a+ )  by Re(a) 

and *
2 (i a a− + )  by Im(a). Note that a=Re(a) + i Im(a). 

Finally, a mapping T from a topological *-semigroup 
S with an identity into the bounded A-linear operators 
on a Hilbert module H is called a *-representation if 

 (the identity operators),  and eT I= *
*( )xx

T T=

xy xT T T= y  for all , .x y S∈  

§1 The Basic Results 

We start with the following proposition whose proof 
is omitted, since it can be obtained by a slight 
modification in the proof of Proposition 4.1.9 on [4]. 
 
Proposition 1.1.  Let A be a proper *H -algebra. Let S 
be a commutative *-semigroup with identity e and 

: (S A )ψ τ→  be a hermitian function with (0) 0ψ ≥ .$ 
Then ψ  is weakly negative definite if and only if the 
kernel: *( , ) ( ) ( ) ( )*x y x y xyψ ψ ψ+ −a  is weakly 
positive definite on S . S×

The proof of the following lemma is straightforward. 
 
Lemma 1.2.  Let A be a proper *H -algebra and S be a 
commutative *-semigroup with identity e. Let 

: (S A )ψ τ→  be hermitian weakly negative definite. 
Then the following statements hold. 

(i) 2Re * * * )

(ii) 2Re *( ) ( ) ( )x e xxψ ψ ψ≥ +  ( x S∈ ). 
 
Lemma 1.3.  Let A be an *H -algebra with identity 1 
and S be a commutative *-semigroup with identity e. 
Let : (S A )ψ τ→ be weakly negative definite. Then ψ  
is *-additive if and only if 2Re *( ) ( ) ( )x e xxψ ψ ψ= +  
( x S∈ ). If this is the case, then ( ) 0.eψ =  
 
Proof.  Since the kernel : ( , ) ( )k x y xψa  

 ( ,* *( ) ( )y xyψ ψ+ − x y S∈ ) is weakly positive 
definite, we conclude that the 

*

a b
b c
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

with ( , )a k x x= , ( , )b k x y= , is positive 
definite. Thus 

( , )c k y y=
* 0ac bb− ≥ . Now if 2Re ( )xψ  

(*( ) ( )e xxψ ψ= + x S∈ ), then  We now prove 
that this implies 

0.a =
0b = . So the problem turns into 

showing that if a matrix of the form 

*

0 b
b c
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

is positive definite then . By the definition of 
positive definiteness we have 

0b =

2Re * *( )u bv v bv 0+ ≥  

for all ,u v A .∈  Replacing u with , dividing 
by n, and letting , we get 

(nu n ∈N)

0

0

0

n →∞

Re  *( )u bv ≥

Replacing u by -u, we get Re  , which 
combined with the preceding yields 

*( )u bv ≤

Re *( )u bv = . 

Replacing u by iu, we get Im , so *( )u bv = 0

* 0u bv = . 

for all ,u v A∈ . Taking  and  we get 1u = 1v = 0b = . 
That is *( ) ( ) ( ).*x y xyψ ψ ψ+ =  Replacing y by , we 
obtain 

*y
( ) ( ) ( ).x y xyψ ψ ψ+ =  This equality gives 

( ) 0.eψ =  The converse is obvious.□ 
 
Proposition 1.4.  Let : (S A )ψ τ→  be a *-additive 
function with Re ψ  bounded, i.e. there exists a positive ( ) ( ) (xy xx yyψ ψ ψ≥ + , ( y S∈ ). x
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real number M such that (τ Re ( )xψ ) M≤ ( , )x y S∈  
Then Re 0ψ = . 

 
Proof.  As in the proof of 4.3.9 of [4] one can easily 
prove that every ( )Aτ valued *-additive function is 
weakly negative definite. By Lemma 1.3 we have 
2Re *( ) ( )x xxψ ψ= ( x S∈ ). For every positive integer 
n we can write *( )n *xx t= t for some t . Thus  S∈

* * *

*

( ( )) ( ( )) ( ( ) )
( ( )) 2 (Re ( )) 2

nn ss n ss ss
tt t M

τ ψ τ ψ τ ψ

τ ψ τ ψ

= =

= = ≤
 

where  is a fixed number such that 0M >
(Re ( ))x Mτ ψ ≤ for all x S∈ . Hence 

* 20 ( ( )) Mss
n

τ ψ≤ ≤  

Letting , we obtain n →∞ *( ( )) 0.ssτ ψ =  So 
(Re ( )) 0.sτ ψ =  Hence Re ( ) 0sψ =  ( s S∈ ).□ 

The following result is indeed the key lemma to this 
paper. 
 
Lemma 1.5.  Let A be an *H -algebra with identity. Let 
S be a topological *-semigroup with identity e and with 
a weight function w. Let : (S A )ψ τ→  be a τ -norm w-
bounded continuous negative definite function on S. 
Then there exist a w-bounded *-representation ψπ of S 
by bounded A-linear operators on a Hilbert module Kψ  
and a norm-continuous mapping :C S Kψ ψ→  such that 

( ) ( ) ( ) ( )C st s C t C sψ ψ ψ ψπ= + ( ,s t S∈ ). 
 
Proof.  Let 1K  denote the set of all formal finite sums 

of the form 
1

n
i ii

f x a
=

= ∑  with ix S∈ , ia A∈  and 

 ( n ). We make 
1

0n
ii

a
=

=∑ ∈� 1K  into a right A 

module by defining 
1

n
i ii

fa x
=

= ∑ a a  for every 

11

n
i ii

f x a K
=

= ∑ ∈  and every a . For A∈

1

n
i ii

f x a
=

= ∑  and 
1

m
j jj

g y b
=

= ∑  in 1K  we define 
* *

1 1
( , ) ( ) .n m

i i j ji j
f g a xψ ψ

= =
= −∑ ∑ y b

0}.

 Put 

1{ : ( , )N f K f fψ ψτ= ∈ =  

From the fact that ( , ) ( , ) ( , )tr f g f f g gτ τ≤  for all 
,f g A∈  it follows that Nψ  defines a linear subspace 

of 1K . Using the fact that ( , )fa faτ  
* *(( . ) ) ( , ) ( )f f aa f f aaτ τ τ≤ ≤  ( 1,f K a A∈ ∈ ), we 

conclude that fa  is in h Nψ  for every f N ψ∈  and 
a A∈ . So Nψ  defines a right A-module. Let 

0 1 / .K K N ψ=  Then for every 
1

n
i ii

f x a N ψ=
= +∑  and 

1

m
j jj

g y b N ψ=
= ∑ +  in 1K  the equation 

( )* *
1 1

, (n m
i i j ji j

) .f g tr a x y bψ ψ
= =

〈 〉 = −∑ ∑  

defines an inner product .,. ψ〈 〉  on 0K . Let K denote the 
Hilbert space completion of 0K  with respect to this 
inner product and we denote the corresponding norm on 
K by . .

ψ
 For every x S∈  and 

01

n
i ii

f x a N Kψ=
= +∑ ∈  we define ( )x fψπ = 

1

n
i ii

xx a
=∑ Nψ+ . It is clear that ( )xyψπ  

( ) ( )x yψ ψπ π= ( ,x y S∈ ) on 0.K We now prove that 
for every ,x S∈  ( )xψπ  defines a w-bounded operator 

on 0K . To this end, choose 01

n
i ii

f x a N Kψ=
= +∑ ∈  

and define the complex-valued function h on S by 

( )* *
1 1

( ) ( )n n
i i j ji j

h x t r a x x x aψ
= =

= −∑ ∑ . Let 

1, , mλ λ ∈K �

0,a

 and  Since 1, , .my y S∈K

1 1 1 1
( )( )m n m n

k i k ik i k i
aλ λ

= = = =
= =∑ ∑ ∑ ∑  we conclude 

that *
1 1

( )m m
k kk

h y yλ λ
= =

≥∑ ∑ l ll
0.  So h defines a 

complex-valued positive definite function on S. 

* *

1 1

* *

1 1

| ( ) | ( )

( ) ( ) ( ( ))

( ) ( ),

n n

i i j j
i j

n n

i j i j
i j

h x a x xx a

a a x xx

Mw x x S

τ ψ

τ τ τ ψ

= =

= =

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠

≤

≤ ∈

∑∑

∑∑  

with *
1 1 1

( ) ( ) ( ) ( )n n
i j i ji j

M M a a w x wτ τ
= =

= ∑ ∑ x  where 

 is chosen so that 1 0M > 1( ( )) ( )x M w xτ ψ ≤  ( ).x S∈  
By Proposition 4.1.12 of [4] we have 

2 * *

*

2 2

( ) ( ) ( ) ( )

, ( )

( ( )) ( ).

x f h xx h e w xx

f f w xx

f w x x S

ψ ψ

ψ

ψ

π = ≤

= 〈 〉

≤ ∈

 

Hence ( ) ( )x f w xψ ψψ
π ≤ . By the norm density 
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of 0K  in K, one can easily extend ψπ  to a 
representation ψπ%  of S by bounded operators on K such 

that ( ) ( )x f w xψ ψψ
π ≤%  ( ).x S∈  For simplicity we 

again denote ψπ%  by .ψπ  
Now for every s S∈ we define  by 0:C S Kψ →

( ) 1 ( 1) .C s s e Nψ ψ= + − +  Since for every ,s t S∈  

2 * *( ) ( ) ( ( )2 Re ( ) ( )),C s C t tr ss st ttψ ψ ψ
ψ ψ ψ− = − − *  

from the τ -norm continuity of ψ  it follows that Cψ  is 
also continuous. It is now clear that Cψ , ψπ  satisfy the 
equation (1).□ 

The following theorem is the main result of this 
paper. 
 
Theorem 1.6.  Let S be a commutative topological 
*-semigroup with identity and with a weight function w. 
Let A be an *H -algebra with identity 1. Let ψ  be a τ -
valued τ -norm w-bounded and τ -norm continuous 
negative definite function on S such that Reψ  is 
bounded. Then there exists a τ -norm continuous 
w-bounded positive definite function ϕ  on S,  
and a *-homomorphism : Re(S )Aγ →  such that 

( ) ( ) .e e iψ ψ ϕ γ= − + +ϕ   
 
Proof.  We construct the Hilbert space ,Kψ  the 
continuous representation ,ψπ  and the norm continuous 
function :C S Kψ ψ→  as in the proof of Lemma 1.5. 
For every s S∈  we have 

2

*

*

( ) ( ), ( )

( 1 ( 1) , 1 ( 1) )

( ( ) 2 Re ( ) ( ))

( ( )) 2 (Re ( )) ( ( ))

2 4 ,

C s C s C s

tr s e N s e N

tr ss s ee *

*ss s

M M M M

ψ ψ ψ ψψ

ψ

ψ ψ ψ

τ ψ τ ψ τ τ

= 〈 〉

= + − + + − +

= − +

≤ + +

< + + =

ee

ψ

 

where  is such that 0M > (Re ( ))s Mτ ψ ≤ for all 

.s S∈  Therefore 1/ 2( ) 2C s Mψ ψ
≤  ( s S∈ ). Let 

'K denote the closed convex hull of the set 
 in { }( ):C s s Sψ ∈ .Kψ  Since on Kψ  the weak 

topology coincides with its weak *-topology, from the 
Banach Alaoglu Theorem and the Krein-Milman 
Theorem it follows that 'K  is weakly compact. For 

every t S∈  we define  Then we 

extend on 

( ( )) ( )t C s C tsψ ψ=% .

t% 'K  in the obvious way and we denote its 
extension again by  It is clear that .t% 1/ 2( ) 2t M

ψ
λ ≤%  

for every  Since S is commutative, from the 
Markov-Kakutani fixed point theorem (p. 456 of [7]) it 
follows that there exists  such that 

' .Kλ ∈

'Kν ∈ ( )t ν ν=%  for 
all .t S∈  So by (1) we have ( ) ( )s C sψ ψπ ν ν= +  
( s S∈ ). Thus for every ,s t S∈  

* *

*

*

( ) ( ) ( ) ( ) ( ( ), ( ))

( ( ) , ( ) )

( ( ) , ) ( ( ) , )

( ( ) , ) ( , ) .

t s t s e C s C t

s t

t s s

s

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ

ψ ψ ψ ψ

π ν ν π ν ν

π ν ν π ν ν

π ν ν ν ν

− − + =

= − −

= −

− +

 

Let ( ) ( ( ) , ) ( ).s s sψ ψ Sϕ π ν ν= ∈  From the equality 

( ) ( ) ( ) ( )s t C s C tψ ψ ψ ψψ ψ
π ν π ν− = −  for every 

,s t S∈  and the continuity of Cψ  it follows that ϕ  is 
also continuous. It is also clear that ϕ  defines a 
w-bounded positive definite function. For every ,s t S∈  

* *

* * *

( ) ( ) ( ) ( )

( ( ) ) ( ( ) ) ( ( ) )

t s t s e

t s a t s a s a

ψ ψ ψ ψ

ϕ ϕ ϕ

− − +

= − − − − −
 

with ( , )a ψν ν=  which is positive in ( ).Aτ  If we put 
( ),b a eψ= −  then  and 0,b ≥ bχ ψ= + +ϕ  satisfies 

 (* * *( ) ( ) ( ) ( ) ( )t s t s t sχ χ χ χ χ= + = + ,s t S∈ ). That is; 
χ  defines a *-homomorphism of S into ( ).Aτ  It is 
clear that χ  is a negative definite. So by Proposition 
1.4, Re( ) 0.χ =  Thus iχ γ= , where : Re(S A )γ →  is 
a *-homomorphism. Since both ψ , it follows that γ  is 
continuous. Using the fact that ( ) 0eγ = , we conclude 
that ( ) ( )b e eψ ϕ= − . The proof is now complete.□ 

An application of Theorem 1.6 with the aid of 
Proposition 1.4 gives the following generalization of the 
Harzallah result in [10] (see also Proposition 7.13 of 
[5]) from the case of continuous complex-valued 
negative definite functions on commutative topological 
groups to the case of bounded continuous *H -valued 
negative definite functions on commutative topological 
*-semigroups. 
 
Corollary 1.7.  Let S be a commutative topological *-
semigroup with identity. Let : (S A )ψ τ→  be a 
bounded τ -norm continuous negative definite function. 
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Then there exists a bounded continuous A-valued 
positive definite function : (S A )ϕ τ→  such that  

( ) ( )e eψ ψ ϕ= − +ϕ . 

§2 A Lévy-Khinchin Formula for H*-valued 
Negative Definite Functions 

In this section we assume that S is a commutative 
topological *-semigroup with identity and with a weight 
function w continuous at the identity. 

We denote by  the set of all *-semicharacters on 
S. Note that when  equipped with the topology of 
pointwise convergence inherited from  defines a 
completely regular space. We also note that a 
*-semicharacter 

*S
*S

,S�

χ is w-bounded if and only if | | .wχ ≤  
Hence  the space of all w-bounded *-semicharacters 
on S is a compact subset of  We denote by 

( , respectively) the set of all semicharacters 

in  which are continuous at e (continuous on S, 
respectively). 

* ,wΓ
*.S

*
( , , )w c eΓ *

( , )w cΓ
*
wΓ

Let λ  be a nonnegative Radon measure on ; the 
generalized Laplace transform of 

*S
λ  whenever it is 

defined is given by 

*
ˆ( ) ( ) ( ) ( ).

S
s s d s Sλ γ λ γ= ∈∫  

These functions are referred to as moment functions 
(see, [23]). Note that every moment function is positive 
definite. We denote by (  
respectively) the set of all w-bounded continuous at 
identity (continuous, respectively) complex-valued 
positive definite functions on S. We denote the complex 
span of  by  As is shown in 
Proposition 1 of [15]  is translation 
invariant, that is 

( , , , )S w c eP ( , , ),S w cP

( , , , )S w c eP ( , , , ) .S w c e〈P 〉
〉( , , , )S w c e〈P

( , , , )a S w c eϕ ∈〈 〉l P  for every 
( , , , )S w c eϕ ∈〈 〉P  and ,a S∈  where ( )(a )xϕl  

( )axϕ=  for all .x S∈  Let w be a weight function on S. 
By the continuity of w at e there is a fixed 
neighbourhood of e on which w is bounded. Let  
be a basis of neighbourhoods V of e which are contained 
in . For V  and 

0V V

0V ∈V ( , , , ) ,S w c eϕ ∈〈 〉P  set 

{ }sup | ( ) |: .
V

s s Vϕ ϕ= ∈  

Let  denote the complex-vector space 
of all linear functionals L on 

*( , , , )S w c e〈P 〉
( , , , )S w c e〈 〉P  such that 

for every V  there exists a positive number  

satisfying 

∈V VC

| ( ) | ( ( , , , ) , ).V V
L C S w c e Vϕ ϕ ϕ≤ ∈〈 〉P V∈  

The infimum of the constants will be denoted by VC
.

V
L  Note that .

V
defines a norm on 

*( , , , ) .S w c e〈 〉P  The topology on  will 
be the topology induced by the norm 

*( , , , )S w c e〈 〉P
. ,

V
 that is a net 

( )Lα  in *( , , , )S w c e〈 〉P  converges to L ∈  
*( , , , )S w c e〈 〉P  if 0

V
L Lα − →  for every V ∈V . A 

functional *( , , , )L S w c e∈〈P 〉  is called nonnegative on 
V ∈V  if ( ) 0L ϕ ≥  for every ( , , , )S w c eϕ ∈〈 〉P  with 

0ϕ ≥  on V. A topological * semigroup S is called 
admissible with respect to a weight w if for each V

−
∈V , 

there exists an element *( , , , )VL L S w c e= = 〈 〉P  which 
is nonnegative on V and ss L→ l  from S into 

*( , , , )S w c e〈 〉P  is continuous at e, where 
$ ( )( ) ( ( ))s sL Lϕ = ϕl l ( , , , )S w c e (ϕ ∈〈 〉P ). For further 
information on admissible topological semigroups with 
respect to a weight we refer the reader to [23]. 
 
Theorem 2.1.  (Generalized Bochner's Theorem). Let S 
be a commutative topological * semigroup admissible 
with respect to a weight w and let A be a proper 

−

*H − algebra. Let ϕ  be a ( )Aτ − valued and τ − norm 
w-bounded, τ − continuous at the identity and positive 
definite function on S. Then there exists a unique A-
valued spectral measure (c.f.p. 118 of [20]) 

: (P P )Δ → Δ  defined on the σ − algebra of Borel 
subsets of *

wΓ  such that  for every compact 
subset K of  and 

( ) 0P K =
* *

( , , )\w w c eΓ Γ

*
( , )

( ) ( ) ( ) ( ).
w c

x x dP x Sϕ χ χ
Γ

= ∈∫  

 
Proof.  By Theorem 1 of [19], there exists a w-bounded 
*-representation T of S by A-linear operators on a 
Hilbert module K with some vector 0 Kξ ∈  such that 

0 0( ) ( , )xx tr Tϕ ξ ξ=  ( ).x S∈  So to every vector Kξ ∈  
the function ξϕ  where ( ) ( , )xx tr Tξϕ ξ ξ=  ( ).x S∈  
defines a w-bounded, continuous at the identity and 
complex-valued positive definite function on S. So by 
Theorem B of [23] there exists a positive regular 
measure ξμ  such that 

*
( ) ( ) ( ) ( ).

w

x x d x Sξ ξϕ χ μ χ
Γ

= ∈∫  
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Now an argument similar to the proof of Theorem 
3.5, of [13] (see also, [16]) shows that there exists a 
spectral measure E from (the *( )wB Γ σ − algebra of all 
Borel subsets of  into the bounded operators on the 
Hilbert space (

*
wΓ
( , , )K 〈 〉 , ( , ) ( ,tr K )ν η ν η ν η〈 〉 = ∈ ) 

such that 

*
, ( ) , ( ) ( , ,

w
xT x d E x Sν η χ ν χ η ν η

Γ
〈 〉 = 〈 〉 ∈ ∈∫ ).K  

Now if we define the generalized spectral measure P 
on  by *( )wB Γ

*( ( ) , ) ( ( ) , ) ( , , ( ))wP E K Bξ η ξ η ν ηΔ = Δ ∈ Δ∈ Γ  

then we obtain 

*
( ) ( ) ( ) ( ).

w

x x dP x Sϕ χ χ
Γ

= ∈∫  

Thus the theorem is established.□ 
A combination of Theorems 2.1 and 1.6 gives the 

following type of the Lévy-Khinchin formula for the 
( )Aτ -valued negative definite functions (see, page 271 

of [3]). It also establishes our conjecture in [14] even in 
a more general setting. Note that the proof of Theorem 
1.6 shows that if ψ  is continuous at the identity then so 
is γ . 
 
Theorem 2.2.  Let S be a commutative *-semigroup 
admissible with respect to a weight function w. Let A be 
an *H -algebra with identity. Suppose that ψ  is a τ -
norm w-bounded and τ -continuous at identity and 
negative definite function of S into ( )Aτ  such that 
Reψ  is bounded. Then there exists a unique A-valued 
spectral measure  defined on the : (P PΔ → Δ) σ -
algebra of Borel subsets of  such that *

wΓ ( ) 0P K =  for 
every compact subset K of  and a 
continuous at the identity *-homomorphism 

* *
( , , )\w w c eΓ Γ

: Re(S )Aγ →  with 

*
( , )

( ) ( ) ( )

[1 ( )] ( ) ( ).
w c

x e i x

x dP x S

ψ ψ γ

χ χ
Γ

= +

+ − ∈∫
 

Before turning the next result, we shall first recall 
that (see [2,13,15]) on a topological semigroup S the 
algebra ( )aM S  denotes the space of all measures 

( )M Sμ ∈  (the Banach algebra of bounded regular 
complex measures on S) such that the mappings: 

* | |xx δ μa  and | | * xx μ δa  ( xδ denotes the Dirac 

measure at x) from S into ( )M S  are weakly 
continuous. S is called a foundation semigroup if 

suppU { }: (a )M Sμ μ ∈  is dense in S. As well as from 
weighted topological groups, topological *-groups for 
which the involution * is not necessarily the same as the 
inversion, and weighted discrete semigroups there are 
many other examples of weighted foundation 
semigroups. For example, , the semigroup with 
underlying space the subset [1 , of 

1S
,3] [1,3]× 2�  and 

multiplication defined as follows: 

( , )( , ) : (min( ,3), min( ,3))a b c d ac ad b= +  

for all , , , [1,3],a b c d ∈ and  with the underlying 
space also[1

2S
,3] [1,3]× , but multiplication defined by 

( , )( , ) : (min( ,3),min( ,3))a b c d ac bc d= +  

for all , , , [1,3],a b c d ∈ whenever both  and  are 
endowed with restriction topology of  are foundation 
semigroups. For more details see [22]. It is also easy to 
see that 

1S 2S
2�

3 [0,1]S =  with the restriction topology of �  
and multiplication defined by min( ,1)xy x y= +  for all 

, [0,1x y ]∈  is a foundation semigroup. For further 
examples we refer the interested reader to [22]. 

Recall that if S is foundation *-semigroup with 
identity then it is admissible with respect to any weight 
w which is continuous at the identity, moreover 

 (see,[15]). So in the case from Theorem 
2.1 we obtain the following generalization of Theorem 
5.3 of [13]. 

* *
( , ) ( , )w c w cΓ = Γ

 
Theorem 2.3.  (Generalized Bochner's Theorem on 
foundation semigroups). Let S be a commutative 
foundation topological *-semigroup with identity and 
with a weight function w. Let A be a proper *H -
algebra and ϕ  be a τ -norm w-bounded and τ -
continuous positive definite function of S into ( ).Aτ  
Then there exists a unique A-valued spectral measure 

: (P P )Δ → Δ  defined on the σ -algebra of Borel 
subsets of *

wΓ  such that 

*
( , )

( ) ( ) ( ) ( ).
w c

x x dP x Sϕ χ χ
Γ

= ∈∫  

In the particular case that S is a foundation 
semigroup with identity, an application of Theorem 2.2 
with the aid of Theorem 2.3 gives the following Lévy-
Khinchin formula for the τ -norm w-bounded τ -norm 
continuous negative definite functions on S. 
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Theorem 2.4.  Let S be a commutative foundation 
topological *-semigroup with identity and with a weight 
function w. Let ψ  be a τ -norm w-bounded τ -norm 
continuous negative definite function of S into ( )Aτ  of 
an *H -algebra A with identity. If Reψ  is bounded, 
then there exists a unique A-valued spectral measure 

 defined on the : (P PΔ → Δ) σ -algebra of Borel 
subsets of  such that  for every compact 
subset K of  and a 

*
wΓ ( ) 0P K =

* *
( , , )\w w c eΓ Γ Re( )A -valued 

continuous *-homomorphism γ  on S with 

*
( , )

( ) ( ) ( )

[1 ( )] ( ) ( ).
w c

x e i x

x dP x S

ψ ψ γ

χ χ
Γ

= +

+ − ∈∫
 

As an application of the above result we obtain the 
following generalization of Theorem 3 of [19] from the 
case of locally compact groups to the case of locally 
compact *-groups for which the involution * is not 
necessarily the same as the inversion. Note that the 
space of w-bounded *-characters on G is denoted by 

 * .wG
 
Theorem 2.5.  Let G be a locally compact group with a 
continuous involution * and with a weight function w. 
Let ϕ  be a τ -norm w-bounded and τ -continuous 
positive definite function of G into ( )Aτ  of a proper 

*H -algebra A. Then there exists a unique A-valued 
spectral measure  defined on the : (P PΔ → Δ) σ -
algebra of Borel subsets of  such that *

wΓ

*
( ) ( ) ( ) ( ).

wG
x x dP x Gϕ χ χ= ∈∫  

A result similar to that of Theorem 2.4 can be proved 
for locally compact *-groups. We have omitted even the 
statement of the theorem. 

In the following we give an example of an *H -
algebra A together with a weighted foundation 
semigroup S and with a ( )Aτ -valued continuous 
positive definite function on S. 
 
Example.  Let S be a commutative foundation 
*-semigroup with identity and with a weight function w. 
Let ( , )X μ be a probability measure space and λ  be a 
positive measure in . By the Example 1 on page 
368 of [1], 

*( )wM Γ
2 *( ,wA L X

*( )( , ) ( , ) ( ) ( , , )ws x a x s x X sϕ χ χ χ χ= ∈ ∈Γ S∈  

It is obvious that ϕ  defines a w-bounded ( )Aτ -
valued positive definite function on S. To prove the 
continuity of ϕ  we first prove that it is continuous at e. 
To see this, by the continuity of w at e we can take a 
fixed compact neighbourhood V of e on which w is 
bounded. Suppose that . For every 
positive 

k=sup{w(s):s V}∈
ε , by the regularity of λ , there exists a 

compact subset K of such that *
wG *( \ )K

)μ λ= ×Γ × defines an *H -
algebra. Take a positive element a in A. So ( )a Aτ∈ . 
Define : (S A )ϕ τ→ by 

wλ Γ  24k
ε< .  

From Ascoli's theorem (11, p.233, Theorem 17) it 
follows that K is equicontinuous. Therefore there exists 
an open neighbourhood W of e such that 

1/ 2| ( ) ( ) |s eχ χ ε− <  ( ,K s Wχ ∈ ∈ ). Let .U W V= ∩  
Then for every s U∈ we have 

*

*

*

2

2

2 2

2 2
2

2 2
2 \

2

2 2 *
2

2

2

( ) ( )

| ( , ) | | ( ) ( ) | ( )( , )

| ( ) ( ) | ( )

( | ( ) ( ) | ( )

| ( ) ( ) | ( ))

(4 ( \ ) ( ))

.

w

w

w

X

K

K

w

s e

a x s e d x

a s e d

a s e d

s e d

a k K K

a

ϕ ϕ

χ χ χ μ λ χ

χ χ λ χ

χ χ λ χ

χ χ λ χ

λ ελ

ε λ

×Γ

Γ

Γ

−

= −

≤ −

= −

+ −

≤ Γ +

<

∫

∫

∫

∫

×

 

Thusϕ  is continuous at e. Since S is a foundation 
semigroup with identity, an argument similar to that in 
the proof of Lemma 3 of [15] proves that ϕ  is 
continuous on the whole of S. 
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