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Abstract 

We discuss in this paper the strong convergence for weighted sums of 
negatively orthant dependent (NOD) random variables by generalized Gaussian 
techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random 
variables is extended in NOD setting by generalized Gaussian techniques. 
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1. Introduction 

Many useful linear statistics based on a random 
sample which are weighted sums of i.i.d. random 
variables. Examples include least-squares estimators, 
nonparametric regression function estimators and 
jackknife estimators, among other. In this respect, 
studies of strong convergence for these weighted sums 
have demonstrated significant progress in probability 
theory with applications in mathematical statistics. Up 
to now, various limit properties for sums of i.i.d. 
random variables have been studied by many authors. 

The most commonly studied method of summation is 
that of Cesaro's. Set, for 1α > − , 
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Let  be a sequence of i.i.d. random 
variables. One says that { ,  satisfies Cesaro 
Law of Large Numbers of order 

{ , 0nX n ≥

1

0

1 n

n k k
kn

A X
A

α
α

−
−

=
∑  converges  as  . .a s .n →∞

It is well known that 
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For 1α =  this result is the classical Kolmogorove 
strong law. For 1/ 2 1α< <  the proof is due to Lorentz 
[10]; for 0 1/ 2α< <  it follows from Chow and Lai [4]. 
The case 1/ 2α =  was treated by Deniel and Derriennic 
[5]. Heinkel [6] established a version of this result in a 
Banach space setting. Li et al. [8] studied the 
convergence rates of Cesaro Law of Large Numbers and 
pointed out the following result. 
 

}
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Theorem 1.1.  Let  be a sequence of 
i.i.d. random variables. For 

{ , , 1}nX X n ≥

0 1/ 2α< < , if | |t XEe < ∞  
for all  then, as , 0,t > n →∞,α< <  if 
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Liang et al. [9] derived Theorem 1.1 for a sequence 
of negatively associated random variables. (For 
definition of negatively associated see Jage-Dov and 
Prochan [7].) 

However, many variables are dependent in problems. 
For example, negatively orthant dependent random 
variables, its definition is as follows: 
 
Definition 1.1.  A finite family of random variables 
{ , 1 }iX i n≤ ≤  is said to be negatively orthant 
dependent (NOD) if for all real 1, , nx xK , 
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An infinite family of random variables is NOD if 
every finite subfamily is NOD. 

In order to extend Theorem 1.1 to NOD setting, we 
will use generalized Gaussian techniques to provide 
strong convergence for NOD random variables. 
 
Definition 1.2.  (Chow [3]) A random variable  is 
said to be generalized Gaussian (GG), if there exists 

X

0δ ≥  such that for every real number t, 
2 2 / 2 .tX tEe e δ≤  (1.1) 

The infimum of those δ  satisfying (1.1) is denoted 
by ( ).Xτ  
■ 

It is clear that, if  is generalized Gaussian, so are 
 and aX  (for ) with 

X
X− 0a ≠ ( ) ( )X Xτ τ− =  and 
( ) | | (X )aX aτ τ= . 

 
Remarks 1.1.  A) The parameter δ  is not unique unless 
the value is assigned to be the minimum of the values 
satisfying (1.1). B) All moments of a generalized 
Gaussian random variable are exists and the mean must 
be zero. C) Let  be a generalized Gaussian random 
variable with 

X
( )Xτ δ≤  then, 

2 2| | / 22t X tEe e δ≤ . 
■ 

By generalized Gaussian techniques, strong 

convergence has been studied by many authors. For 
example, Chow [3] for weighted sums of independent 
random variables, Ouy [12] for m-dependent random 
variables, Taylor and Hu [11] for bounded and 
independent random variables, Amini [1] for NOD 
random variables. This paper is organized as follows. In 
Section 2, we give our main results. In Section 3, we 
prove the main results. 

2. Main Results 

By the following theorem, we extend Theorem 1.1 to 
NOD setting. 
 
Theorem 2.1.  Let  be an array 
of row NOD generalized Gaussian random variables 
with 
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Corollary 2.1.  In Theorem 2.1, if  for 

 (e.g. 
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1.n ≥ ,niδ δ=  for all  where 1 ,ni k n≤ ≤ ≥1, δ  
is a positive constant.) we can replace the conditions 

 and  of Theorem 2.1 by ( )i ( )ii

(i)′  , 1

1
max | | ((log ) )

n
nii k

a O n −

≤ ≤
=

(ii)′  . 2 1

1
((log ) )

nk

ni
i

a o n −

=

=∑
■ 

The following corollary extends the result of Li et al. 
[8] in NOD setting by generalized Gaussian techniques. 
 
Corollary 2.2.  Let  be a sequence of NOD 
generalized Gaussian random variables with 

{ , 0}nX n ≥

( )ni niXτ δ≤  such that  for  Then 

for 0
1
max (1)

n
nii k

Oδ
≤ ≤

= 1.n ≥

1/ 2,α< <  as , we have, n →∞
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3. Proofs 

In this section, a  means a = O ( b ), 
 Let C  be a positive 

constant whose value is unimportant and may vary at 
different place. We give some of the NOD properties 
that will be needed in the proof of the main result. For 
the proof see Bozorgnia et al. [2].  

b<<
max(0, ), max(0, ).a a a+ −= = a−

 
Proposition 3.1.  Let  be a sequence of 
NOD random variables and { ,  be a 
corresponding sequence of Borel functions such that, 
are monotone increasing (or all are monotone 
decreasing), then { (  is a sequence of NOD 
random variables. ■ 
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1}nf n ≥
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Proposition 3.2.  Let { ,1 }iX i n≤ ≤  be a finite family 
of NOD random variables and be all 
nonnegative (nonpositive) real numbers. Then 
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Proof of Theorem 2.1.  Since  it suffices 
to show, for any 
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We prove only (3.1), the proof of (3.2) is analogous. 
To prove (3.1), we need only to prove, for any 0ε > , 
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We first prove (3.3). From the Proposition 3.1, we 
know that { ,  is still an array of 

row NOD random variables. Since 

1 ,ni ni na X i k n+ ≤ ≤ ≥

2 | |1
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for all ,x R∈  hence by using Proposition 3.2 and 
Remarks 1.1, for log / ,t M n ε=  where M  is a large 
constant and will be specified later on, we get 
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provided ( )M r ε> + −  Thus, (3.3) is proved. 
By replacing niX  by niX−  from the above 

statement, and noticing { (  is 
still an arrays of row NOD random variables, we know 
that (3.4) holds. 
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Proof of Corollary 2.2.  Set 1 1( log )nk n ka n n Aα α− −

−=  
/ nAα , for 0 k n≤ ≤  and  Then (2.1) holds if and 
only if 

1.n ≥

0

lim 0 . .
n

nk kn k

a X a s
→∞

=

=∑  (3.5) 

Note that, for 1α > − ,  as  
It is easy to see that 
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Now by applying Theorem 2.1 and Corollary 2.1 we 

get (3.5). 
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