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Abstract 
In this paper, we extend and generalize some recent results on the strong laws 

of large numbers (SLLN) for pairwise independent random variables [3]. No 
assumption is made concerning the existence of independence among the random 
variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly 
integrable r.v.’s is extended. 
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1. Introduction and Preliminaries 

Let  be a sequence of integrable r.v.’s 
defined on the same probability space and put 

, 

{ , 1}nX n≥

1

( )
n

i
i

S n X
=

=∑ ( ) /nX S n n= . Landers and Rogge [8] 

proved a strong law of large numbers (SLLN) for 
pairwise independent and strongly uniformly integrable 
r.v.’s. Chandra and Goswami [3] proved a more general 
SLLN for pairwise independent and Cesàro uniformly 
integrable r.v.’s. Landers and Rogge [9] showed that 
Chandra’s results hold for non-negative and 
uncorrelated instead of pairwise independent r.v.’s, but 
not without the assumption of non-negativity. Matula 
[10] has proved the SLLN for pairwise negatively 
dependent r.v.’s with the same distribution. Bozorgnia 
et al. [2] obtained the SLLN for weighted sums of an 
array of rowwise negatively dependent r.v.’s under 
certain moment conditions. Amini [1] has proved the 
SLLN for special negatively dependent r.v.’s and for 
weighted sums of uniformly bounded negatively 
dependent r.v.’s. In this paper, we modify and 

generalize some theorems of SLLN of Chandra and 
Goswami [3] for pairwise negatively dependent r.v.’s 
which are not necessarily identically distributed. 

 
Definition 1.  The random variables  
are said to be pairwise negatively dependent (henceforth 
pairwise ND) if 

1, , ( 2)nX X n⋅ ⋅ ⋅ ≥

(1)  ( , ) ( ) (i i j j i i j j )P X x X x P X x P X x> > ≤ > > , 

for all ix , ,jx i j∈ℜ ≠ . It can be shown that (1) is 

equivalent to 

(2)  ( , ) ( ) (i i j j i i j j )P X x X x P X x P X x≤ ≤ ≤ ≤ ≤ , 

for all ix , ,jx i j∈ℜ ≠ . 

 
Definition 2 ([7]).  The random variables 1, , nX X⋅ ⋅ ⋅  

 are said to be negatively associated (NA for 
short) if for every pair of disjoint nonempty subsets 
( 2n ≥ )

1 2,A A  of { , 1,..., }n

(3)  1 1 2 2( ( , ), ( , )) 0i iCov f X i A f X i A∈ ∈ ≤  
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whenever 1f  and 2f  are coordinatewise increasing such 
that this covariance exists. Clearly (3) holds if both 1f  
and 2f  are decreasing. 

An infinite collection of { ,  is said to be 
pairwise ND (negatively associated) if every finite 
subcollection is pairwise ND (negatively associated). 

1}nX n≥

It can be shown that NA implies pairwise ND and for 
, ND is equivalent to NA. 2n =

2. Main Results 

In this paper, C stands for a generic constant not 
necessarily the same at each appearance. Also { ( )}f n  
will stand for an increasing sequence such that 

( ) 0f n >  for each n, ( )f n →∞ and for 1α > , 

, the integer part of lo( ) log ( )m n f nα⎡= ⎣ ⎤⎦ g ( )f nα , is 

an increasing sequence. 
In the following Theorem we present another poof 

for the theorem of Csörgo et al. [4]. (see Chandra and 
Goswami [3]) 

 
Theorem 1.  Let  be a sequence of r.v.’s 
with finite . Assume that 

{ , 1}nX n ≥
( )nVar X

i)  there is a double sequence { }ijρ  of non-negative 

reals such that 

1 1

( ( ))
n n

ij
i j

Var S n ρ
= =

≤∑∑  for each ; 1n ≥

ii)  , . 2

1 1

/( ( ))ij
i j

f i jρ
∞ ∞

= =

∨ < ∞∑∑ max( , )i j i j∨ =

→Then  completely, in 
the sense of Hsu and Robbins [6] (see also page 225 of 
Stout [12]). 

[ ( ) ( ( ))] / ( ) 0S n E S n f n−

 

Proof.  Put 1( ) ( ( ) ( ))
( )

Z n S n ES
f n

= − n . It is sufficient to 

show that 
1

( ( ) )
n

P Z n ε
∞

=

> <∞∑ . 

1

( ( ) )
n

P Z n ε
∞

=

>∑  

 
2

2
2

1 1

( ( ) ( ))( ( ))
( )n n

E S n ES nCE Z n C
f n

∞ ∞

= =

−
≤ =∑ ∑  

2
1 1 1 ( )

n n
ij

n i j

C
f n

ρ∞

= = =

≤ =∑∑∑ 2
1 1

1
( )ij

i j n i j

C
f n

ρ
∞ ∞

= = ≥ ∨
∑∑ ∑ . 

The relation ( ) [log ( )]m n f nα=  now implies 
( ) ( ) 1( )m n m nf nα α +≤ <  and 2 2( ) m n( )f n α− −≤ . 

Thus the last sum is 

2 ( )

1 1 ( ) ( )

m n
ij

i j f n f i j

C ρ α
∞ ∞

−

= = ≥ ∨

≤ ∑∑ ∑  

( ) 1

2 ( )

1 1 ( )m n

m n
ij

i j f i j

C
α

ρ α
+

∞ ∞
−

= = ≥ ∨

≤ ∑∑ ∑ . 

Let ( ) 1inf{ 1, ( )}m nP n f iα += ≥ ≥ ∨ j . Then the 
RHS above is 

2 ( )

1 1

m n
ij

i j n P

C ρ α
∞ ∞ ∞

−

= = =

≤ ∑∑ ∑ 2

1 1 ( )

m
ij

i j m m P

C ρ α
∞ ∞

−

= = =

≤ ∑∑ ∑  

2 ( )

1 1

m P
ij

i j

C ρ α
∞ ∞

−

= =

= ∑∑ 2
1 1 ( )

ij

i j

C
f i j

ρ∞ ∞

= =

≤ <
∨∑∑ ∞ . 

Then [ ( ) ( ( ))] / ( ) 0S n E S n f n− →  completely, and 
the Borel-Cantelli lemma implies that 
[ ( ) ( ( ))] / ( ) 0S n E S n f n− →  a.s. 

 
Proposition 1 ([1]).  Let{ ,  be a sequence of 
pairwise ND r.v.’s. If { ,  is a sequence of 
monotone increasing (or monotone decreasing) 
functions then { (  is a sequence of pairwise 
ND r.v.’s. 

1}nX n ≥
1}nf n ≥

), 1}n nf X n ≥

 
Corollary 1.  Let  be a sequence of pairwise 

ND r.v.’s. Then  and { ,  are two 

sequences of pairwise ND r.v.’s, where 

{ , 1}nX n ≥

}1,{ ≥+ nX n 1nX n− ≥ }

nX +  and nX −  
are positive and negative parts of a random variable 

nX , respectively. 
Now we are able to prove the following theorems for 

pairwise ND random variables with finite variances. 
 

Theorem 2.  Let  be a sequence of pairwise 
ND r.v.’s with finite . Assume that 

}1,{ ≥nX n

( )nVar X

2

1

( ( )) ( )n
n

f n Var X
∞

−

=

< ∞∑ . 
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Then  completely. ( ) ( ( )) / ( ) 0S n E S n f n⎡ ⎤− →⎣ ⎦
 

Proof.  Under pairwise ND condition we have 

1 1 1 1

( ) ( )
n n n n

i i i
i i i j

Var X Var X jρ
= = = =

≤ =∑ ∑ ∑∑ 1n ∀ ≥ , 

where ( )ii iVar Xρ =  for  and i j= 0ijρ =  for i j≠ . 

It follows from Theorem 1 that ( ) ( ( )) 0
( )

S n E S n
f n
−

→  

completely. 
 

Example 1.  Let  be a sequence of iid 

random variables with finite  and 

{ , 1}nX n ≥

1( )Var X ( ) nf n α= , 
1α > . It is obvious that conditions of Theorem 2 hold 

and we have ( ) ( ( )) 0
( )

S n E S n
f n
−

→  completely. 

 
Example 2.  Let  and { , 1}nX n ≥ ( )f n  be as above, 

 and ,n n n nY a X a= − > 0 ( ),na O nβ=  0β > . Put 

2n nZ X= , 2 1n nZ Y− =  and . It is 

obvious that {
1

( )
n

i
i

S n Z
=

=∑
}nZ  is a sequence of pairwise ND r.v.’s 

with finite Variances. Also 

2

1

2
2

1

2
2 1

1

2
1

1

2 2
1

1

( ( )) ( )

( (2 )) ( )

( (2 1)) ( )

( (2 )) ( )

( (2 1)) ( )

n
n

n
n

n
n

n

n
n

f n Var Z

f n Var Z

f n Var Z

f n Var X

f n a Var X

∞
−

=
∞

−

=
∞

−
−

=
∞

−

=
∞

−

=

=

+ −

=

+ −

∑

∑

∑

∑

∑ <∞

 

Then, by Theorem 2, ( ) ( ( )) 0
( )

S n E S n
f n
−

→  

completely. 
The next theorem is an analogue of the three-series 

theorem of Kolmogorov (1929) for independence r.v.’s. 
Our intention is to replace the conditions of Chandra 
and Goswami [3] by suitable weaker conditions of 
simple nature. (see, in this connection, page 118 of 
Chung [5]). 

Theorem 3.  Let  be a sequence of pairwise 
ND integrable r.v.’s such that there is a sequence 

 of Borel subsets of  that are semi 
intervals 

{ , 1}nX n ≥

{ , 1}nB n ≥ 1R
( , n ]x−∞  ( ( , )nx−∞ ,  or [ , )nx ∞ ( , )nx ∞ ), 

satisfying the following conditions: 

(a) 
1

( )c
n n n

n

C P X B
∞

=

∈ <∞∑  where ; 21 ( / ( ))n nC x f n= ∨

(b) ; 
1

( ( )) ( ( ))
n

c
i i i

i

E X I X B o f n
=

∈ =∑

(c) ; 2 2

1

( ( )) ( ( ))n n n
n

f n E X I X B
∞

−

=

∈ <∑ ∞

here c
nB  is the complement of . Then nB

( ) ( ( )) / ( ) 0S n E S n f n⎡ ⎤− →⎣ ⎦  almost surely as . n → ∞

 
Proof.  Let ( ) ( )n n n n n n nY X I X B x I X B= ∈ + ∉ , . 
By Proposition 1, { ,  is a sequence of pairwise 
ND r.v.’s. We use Theorem 2 for { , . 

1n ≥
1}nY n ≥

1}nY n ≥

2 2

1 1

( ( )) ( ) ( ) ( )n n
n n

f n Var Y f n E Y
∞ ∞

− −

= =

≤∑ ∑ 2

n∈

 

2 2 2

1

( ){ ( ) ( )}
n n

c
n n n

n X B

f n X dP w x P X B
∞

−

= ∈

≤ +∑ ∫  

2 2

1
2

2
1

( ) ( ( ))

( )
( )

n n n
n

cn
n n

n

f n E X I X B

x
P X B

f n

∞
−

=
∞

=

= ∈

+ ∈

∑

∑
 

2 2

1

1

( ) ( ( ))

( )

n n n
n

c
n n n

n

f n E X I X B

C P X B

∞
−

=
∞

=

≤ ∈

,+ ∈ < ∞

∑

∑
 

then, Theorem 2 applied to {  yields, }nY

1

1 ( ( ))
( )

n

i i
i

Y E Y
f n =

0− →∑  a.s. It is easy to show that 

1 1

1 1( ( )) ( (
( ) ( )

n n

i i i
i i

Y E X Y E Y
f n f n= =

− = −∑ ∑ ))i  

1

1 ( )
( )

n
c

i i i
i

x P X B
f n =

+ ∈∑
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1

1 ( ( ( ))
( )

n
c

i i i
i

E X I X B
f n =

− ∈∑ . 

Since 

1

( )
( )

n c
n n

n

x
P X B

f n

∞

=

∈ =∑  

: 1

( )
( )

n

n c
n n

n C

x
P X B

f n

∞

=

∈∑
: 1

( )
( )

n

n c
n n

n C

x
P X B

f n

∞

≠

+ ∈∑  

1

( )c
n n n

n

C P X B
∞

=

≤ ∈∑ < ∞ , 

then, by Kronecker’s lemma we have 

1

1 ( )
( )

n
c

i i i
i

x P X B
f n =

∈ →∑ 0 . By (b), we get 

1

1 ( ( )) 0.→
( )

n

i i
i

Y E X
f n =

−∑
}

 

Since, by (a), r.v.’s { ,  and { ,  are 
equivalent, then by the first Borel-Cantelli lemma, the 
desired result follows. 

1nX n ≥ 1}nY n ≥

In the next theorem, we use the following lemmas. 
Lemma 1 can be proved using the summation by parts 
formula and Lemma 2 is Lemma 15 of Petrov ([11], 
277-278). 

Lemma 1.  If  and  is decreasing, then for 

any bounded {
nb < ∞∑ nb

}nα  such that }{ nnα  is increasing, 

. 1( 1)n n nn n bα α −⎡ ⎤− − < ∞⎣ ⎦∑
We denote by cψ  the set of functions ( )xψ  such 

that (a) ( )xψ  is positive and non-decreasing in the 
interval 0x x>  for some 0x  and (b) the series 

 converges. 1/ ( )n nψ∑
Lemma 2.  Let  be a sequence on non-negative 

numbers, . Then the series 

 converges for any 

{ }na

1

,
n

n n n
i

A a A
=

=∑ →∞

)/ (n n na A Aψ∑ cψ ψ∈ . 

We next generalize the SLLN of Chandra and 
Goswami [3]. The reader should note the naturality of 
Cesàro uniform integrability in the context of laws of 
large numbers. 

Theorem 4.  Let { ,  be a sequence of pairwise 
ND r.v.’s. Assume that there is a function 

1}nX n ≥

: (0, ) (0, )Φ ∞ → ∞  such that 

i) 2

1
inf ( ) / 0
x

x x
≥
Φ > ; 

ii)  is increasing to  as t ; 1 ( )t t− Φ ∞ → ∞

iii) 1

1

( ( ))
n

n
∞

−

=

Φ < ∞∑ ; 

iv) 1

1 1

sup[ ( ( ))] ( )
n

i
n i

n E X c say−

≥ =

Φ = <∑ ∞ . 

Then 
1

1 ( ( ))
( )

n

i i
i

X E X
f n =

0− →∑  almost surely as 

. n → ∞
 

Proof.  We use Theorem 3 with  for 
. It is easy to check that  for each 

. Put 

( , ]nB n= −∞
1n ≥ nC M≤ < ∞

1n ≥ 1

1

[ ( (
n

n ))]
i

n E Xα −

=

= Φ∑ 1n ≥i  for . We 

first verify Condition (a); 

1

( )c
n n n

n

C P X B
∞

=

∈ ≤∑
1

( ( ( ))n
n

M P X n
∞

=

Φ ≥ Φ∑  

1

( ( ) / ( ))n
n

M E X n
∞

=

≤ Φ Φ <∑ ∞ , 

by Lemma 1 and (iv). To prove Condition (b), let 0ε > . 
There is an integer  such that for each 1 1N >

2 ( 1)( ) t ct
ε
+

Φ ≥  for , and so for each , 1t N> 1n ≥

1
1

1

( (
n

i i
i

n E X I X N−

=

>∑ ))  

1
1

1

( ( )) / 2( 1)
n

i i
i

n E X I X N c / 2ε ε−

=

≤ Φ > + <∑ . 

Next there is an integer  such that for each 

, 

1N N>

n N≥
1

1

1

( ) /
N

i
i

n E X 2ε−

=

<∑ . Then for  n N≥

1

( ( ))
n

i i
i

E X I X i
=

> ≤∑
1

( (
n

i i
i

E X I X i
=

>∑ ))  

1

1

( )
N

i
i

E X
=

1
1

( ( ))
n

i i
i

E X I X N nε
=

> <∑ . +∑≤

It is clear that  where n n nB C D E= ∪ ∪ n
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( , )nC n= −∞− , 1/ 4 1/ 4[ , ] [ , ]nD n n n n= − − ∪ , and 

. To prove Condition (c), it suffices 
to show that 

1/ 4 1/ 4( ,nE n n= − )

∞(5)  , 2 2

1

( ( ))n n n
n

n E X I X C
∞

−

=

∈ <∑ 2 2

1

( ( ))n n n
n

n E X I X D
∞

−

=

∈ <∞∑  

and  2 2

1

( ( ))n n n
n

n E X I X E
∞

−

=

∈ <∑ ∞

∞We first show that . 

Since 

2 2

1

( ( ))n n n
n

n E X I X C
∞

−

=

∈ <∑
2inf{ : ( ) / , 1}y y x x x=Φ < −  is positive, then 

there is a z in the interval  such that ( , 1)−∞ −
2( ) / 2z zΦ ≤  inf{ :y y = 2( ) / , 1}x x xΦ < − . Hence 

we have 2( ) /z zΦ 22 ( ) /x x≤ Φ  for each x n< −  and 

2x ≤
2

2 (
( )
z )x

z
Φ

Φ
. Hence 

2 2

1

( ( )n n
n

n E X I X n
∞

−

=

< −∑ )  

2
2

1

2 ( (
( ) n

n

z n E X
z

∞
−

=

≤ Φ
Φ ∑ )) <∞

∞

]

. 

To complete the proof that Condition (c) holds, it 
suffices to show that 

(6)  . 2 2

1

( ( ))n n n
n

n E X I X D
∞

−

=

∈ <∑
For each , there is a  in the interval  

such that 
1n ≥ nz 1/ 4[ ,n n

2( ) /n nz zΦ 2 1/ 42inf{ : ( ) / : }y y x x n x n≤ =Φ ≤ ≤ , 
note that the right side of the above inequality is 
positive. Then for x ∈ 1/ 4[ ,n n ] , we have 

2 ( )2
( )n

n

xx nz
z

Φ
≤

Φ
 (as nz n≤ ) 

22 ( ) / nn x t≤ Φ  (by 1/ 4 ( ))nz n and ii≥  

where  for . Observe that 3/ 4 1/ 4(nt n n= Φ ) 1n ≥

2 2

1 1

( ( )) 2 ( ( )) /n n n n
n n

n E X I X D E X t
∞ ∞

−

= =

∈ ≤ Φ∑ ∑ n

n

 

1
1

2 [ ( 1) ] /n n
n

n n tα α
∞

−
=

= − −∑ . 

So (5) will follow if we show that 
1

1/ n
n

t
∞

=

< ∞∑  

(using Lemma 1). For this purpose, we use Lemma 2 
with  for , 1/ 4 1/ 4( 1)na n n= − − 1n ≥ ( )xψ =  

( ) /x xΦ ; here we are following the notation of 

Petrov [11] and using Assumptions (ii) and (iii). As 
 for each n and , we get 3/ 41/(4 )na n≥ 1/ 4(nt n nψ= )

1

1/ n
n

t
∞

=

< ∞∑ . 

 
Proposition 2.  If  is a sequence of NA r.v.'s 
then Theorems 2, 3, 4 are valid. 

{ , 1}nX n ≥
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