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Abstract 

If we try to estimate the parameters of the AR process {Xn} using the observed 
process {Xn+Zn} then these estimates will be badly biased and not consistent but 
we can minimize the damage using a robust estimation procedure such as GM-
estimation. The question is does additive contamination affect estimates of “core” 
parameters in the infinite variance case to the same extent that it does in the finite 
variance case? We will see that if the contamination {Zn} has higher tails than the 
core process {Xn}, the estimation of parameters of the core process will not be 
greatly affected; that at least its consistency is preserved. 

 
Keywords: Contamination; Infinite variance; Autoregressive 

 
 

 
* E-mail: nirumand@math.um.ac.ir 

1. Introduction 

Suppose that {Xn} is a finite variance AR process 
and {Zn} is some other stationary stochastic process a 
common outlier model in time series analysis is the 
additive model where we observe Xn + Zn instead of Xn 
as we had assumed. 

Let {Yn} be a stationary process satisfying the 
following three conditions: 
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(b) { nε } are i.i.d random variables which are in the 
domain of attraction of stable random variables with 
index (0,2)α ∈  
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< ∞∑  for some δ α<  and 1δ ≤  

The almost sure convergence of the infinite series 
defining Yn was established by Cline [2] under 
conditions (b) and (c). The class of processes satisfying 
(a)-(c) is sufficiently rich to include all stationary 
ARMA (p,q) processes with innovations in the domain 
of attraction of a stable random variable. 

Let {Yt} be the ARMA (p,q) process satisfying: 
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where { tε } is an i.i.d sequence of random variables 
whose common distribution belong to the domain of 
attraction of a stable law with index (0,2)α ∈  which 
we denote by 0 ( )Dε α∈  or { } ( )t Dε α∈  and 
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pZ z z zφ α α α= − − − − ≠  for all complex z 

with 1z ≤ . The conditions ( )0 ( )P y y Lαε −> = y  
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and 
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 where L(y) is slowly varying 

at ∞ and 0α > , , are necessary and sufficient 
condition for 

0 p≤ ≤ 1

0 ( )Dε α∈ . 
Davis and Rensick [3] showed that for all non-

negative integers p: 
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where S is a positive stable random variable with index 

2
α  and Nα  is some normal constant as in condition 

(b). Moreover if we replace each  by its 

mean centered version 

n n kY Y −∑
( )(n n kY Y Y Y−− −∑ )  the 

same limit law results. As a consequence of this the 
sample autocorrelation converges in probability to the 
same limits as in the finite variance case: 
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and the mean centered versions have the same limits in 
probability. 

Suppose now that {Zn} is another stochastic process 
such that the bivariate process {(Yn,Zn)} is stationary 
and nZ Lδ∈  for some δ α> . Suppose we observe 

 that is the original process Yn 
contaminated by additive noise Zn. We shall see that the 
asymptotic properties of the sample autocovariances and 
sample autocorrelations are largely unaffected. This is 
in contrast to the finite variance where any arbitrary 
contamination will lead to asymptotic bias in any 
parameter estimates. 
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Theorem 1.  For fixed integers : 0K ≥
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This is sufficient to show that the second term above 
tends almost surely to zero. By holder's inequality it is 

easy to verify that E( m nY γε ) is finite for 
αδγ
α δ

<
+

 

for any m and n. Also E( 2m nZ Z
α

) is finite. 

Noting that 
2

αδ α
α δ

>
+

 then for some 
2
αγ >  there 

exist absolute moments of order γ  for both YmZn and 
ZmZn. Furthermore we can take 1γ <  and so by the 
following theorem (noting that the summands from a 
stationary and hence identically distributed sequence) 

1
.

1

( )
N

a s
n k n n n k n n k

n k

N Y Z Y Z Z Zγ
−

− − −
= +

0+ + ⎯⎯∑ →  

Since 
1

2 0r
N Nα

−− →  part (a) follows and part (b) 
follows similarly. 
 
Theorem 2.  Let Y,Y1,…,Yn be a sequence of random 
variables with Y Lγ∈  for some (0,2)γ ∈ . Suppose 
that for all x and for all n if either 

( ) ( )nP Y x P Y x> ≤ >    if   1γ ≠  

or 

( ) ( )1 1 1,..., ,...,n nP Y x Y Y P Y x Y Y− −> ≤ > 1n  

if   1γ =  
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then 

1
.
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where 0nμ = if 1γ <  and 1 1( ,..., )n n nE Y Y Yμ −=  if 
1 2γ≤ < . 

One will note that we could replace the o(1) in part 
(a) of theorem 1 by o( N σ− ) for some value of 0σ >  
which will depend on α ,δ  and any independence 
between {Xn} and {Zn} we will illustrate this indirectly 
considering the p-th order autoregressive AR(p) process 
defined as follows: 

1 1 ...n n p n pX X X nβ β ε− −= + + +  

where the AR parameters satisfy the usual stationary 

constraints. Let 
~

n n nX X Z= +  where Zn is defined as 
before. Consider LS estimates of 1,..., pβ β  defined by 

the estimating equations: 
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We know that if {Xn} is perfectly observed ( nZ o≡ ) 

then for all δ α>  
1 ^ .( ) a s

j jN δ β β
−

0− ⎯⎯→  provided 

E( nε )=0 if exists. However we will not require this 
latter condition to hold in what follows. 
 
Theorem 3.  Let nZ Lδ∈  for some δ α>  and 
{(Xn,Zn)} be a stationary bivariate process then for j 
=1,...,p we have 

(a) if {Xn} and {Zn} are independent then 
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Proof.  Equation (1) can be expressed as follows: 
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 (2) 

For k=1,…,p, if we take 1 min(1, )γ α<  then 
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nε  are independent and {Xn} and {Zn} are independent 
now. Thus 
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− − ∈ . Therefore taking 

1 2

1 1max[ , ]γ
γ γ

=  the right hand side of Equation (2) 

multiplied by N γ−  tends in probability to zero. 
Following Hannan and Kanater [5] we also have that 
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where 
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Now by taking k sufficiently close to 2
α

 by noting 

that all terms involving {Zn} tends almost surely to zero 
(by the arguments used above) we have 

 349 



Vol. 16  No. 4  Autumn 2005 Niroumand J. Sci. I. R. Iran 

1min
1 1

.

1

( ) min

( )( )

p p
k k

N j kv
j k

N
a s

n j n j n k n k
n p

N C N v v

X Z X Z

λ − −

=
= =

− − − −
= +

=

+ + ⎯⎯

∑∑

∑ → ∞

0

 

This implies that . 
^ .( ) a sk
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By taking k arbitrary close to 2
α

 and γ  arbitrary 

close to max [ 1
α

, 2
δ

,1] the results of part (a) follows. In 

general case the same procedure works except we must 

ensure that 1 min[ ,1]αδγ
α δ

<
+

. 

Conclusions 
If 1α ≤  and the contaminating process Zn has 

enough moments then asymptotically the contamination 
will not affect the estimates of the AR parameters. 
Specifically if {Zn} is independent of {Xn} then the 
previous statement will be true if E( 2

nZ )<  and in 

general will be true if E(

∞
r

nZ )<  for all r>0. For ∞
1α >  we cannot guarantee that the contamination will 

not affect the rate of convergence of the parameter 
estimates. 
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