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Abstract 

In this paper, we consider the determination methods of maximum entropy 
multivariate distributions with given prior under the constraints, that the marginal 
distributions or the marginals and covariance matrix are prescribed. Next, some 
numerical solutions are considered for the cases of unavailable closed form of 
solutions. Finally, these methods are illustrated via some numerical examples. 
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1. Introduction 

Bayesian entropy of a pdf (pmf) f with given prior 
pdf (pmf) α is defined as 

( )( ) ln
( )f

f XB f E
Xα

⎛
=− ⎜

⎝ ⎠

⎞
⎟

2

 (1) 

The maximum Bayesian entropy probability 
distributions (MEPD) were studied by a number of 
researchers such as Jaynes [9], Ingarden and 
Kassakowski [7], Jain and Consul [8] Guiasu [4], 
Consul and Shenton [2], Consul and Jain [1], Hobson 
and Cheng [6], Tribus and Rossi [14], Georgescu [3], 
Guiasu [5], Kapur [10]. Mansoury, et al. [12] gave a 
general form of the maximum entropy bivariate 
probability distributions (MEBPD) via Shannon’s 
measure of entropy, when the marginal probability 
density functions (pdf) are prescribed and it was 
extended for the maximum entropy multivariate 
probability distributions (MEMPD). In this paper 
determination of MEMPD with given marginal 

distributions or marginals and variance and covariance 
matrix, via Bayesian entropy is considered in section 2. 
Next two numerical methods by using power extension 
and smooth curve fitting are given in section 3. Results 
and discussions are given in the final section. 

2. Determination of MEMPD 

In this section, to determine the MEMPD with given 
marginals, covariance matrix and prior function, the 
following lemma and theorems are presented. 
 
Lemma 1.  Let  denotes the collection of all 
measurable and squared integrable functions. If  and 

 are two pdfs in , then ; a.e. if and only if, 
for any arbitrary function 

2L

1h

2h 2L 1h h=
,K  

( ) ( ) ( ) ( )1
R R

2K x h x dx K x h x dx=∫ ∫  (2) 

Proof.  When 1 2,h h=  a.e. then for any arbitrary 
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function K, Equation (2) is obvious. For the converse, 
from (2) 

1 2( )( ( ) ( )) 0
R

K x h x h x dx− =∫ . 

Since K is arbitrary, for 1 2( ) ( ) ( )K x h x h x= − , we 
have 

2
1 2( ( ) ( )) 0

R
h x h x dx− =∫ , 

Therefore ; a.e. 1h h= 2

 
Theorem 1.  Let 2

1,  ,  ng g L∈L , be prescribed 
marginal pdfs of multivariate distribution of 

 with given prior 1(X , , X )n=X L ( )xα , 

1( , , )nx x E= ∈ nR⊆x L . The MEMPD can be 
uniquely obtained by 

1

( ) ( ) ( )
n

M i i
i

f f xα
=

= ∏x x ,   , (3) E∈x

in which, the functions 1,  ,  nf fL  are found by solving 
the following system of functional equations 

1

( )
nR

α
−
∫ x  

1

( ) ( );
n

i i i i i
i

f x d g x−
=

=∏ x   (4) 1, , ,i = L n

nwhere  denotes . id −x 1 1 1i idx dx dx dx− +L L

Proof.  Since the marginal pdfs of ( )f x  are prescribed, 
for any function ( )i iK X , 

( ( ));ii iE K Xμ = 1, ,n= L i  (5) 

are known. By Lemma 1, prescribed 1, , ng gL  are 
equivalent to prescribe  for any function (i iEK X )

)(i iK X . Now MEMPD, can be found by maximization 
of (1) with constraints (5). By Euler-Lagrange method 
(Kapur, 1989), the Lagrangian is given by 

1

1 1

( ) ln ( ( ) )

{ ln ( ) }

n

i i i i
iE E

n n

i i i i i
E

i i

fL f d K x fd

ff K x f d

λ μ
α

.λ λ μ
α

=

= =

= − + −

= − + −

∑∫ ∫

∑ ∑∫

x x

x

 

Since 
1

( ) ln ( )
n

i i i
i

ff K x fλ
α =

− +∑  is a concave and 

continuous function of f, the unique extermal solution 
maximizes the entropy. Therefore 

1

{( ) ln ( ) } 0
n

i i i
i

ff K x
f

λ
α =

∂ f− + =
∂ ∑ , 

and MEMPD is given by 

1 1 1( ) ( ) exp{ ( )} exp{ ( )}M n n nf K x K xα λ λ=x x L . 

It is clear that Mf  is the product of  separate 
functions 

1n +

1( , , )nx xα L  and 1 1( ),  ,  ( )n nf x f xL , i.e. 

( ) ( )Mf α=x x 1 1( ) ( )n nf x f xL        . E∈x

Since Mf  has the marginals 1,  ,  ng gL , the 
functions 1,  ,  nf fL  can be obtained by solving the 
system of Equations (4). 
 
Theorem 2.  Let , 1,   g L 2

ng L∈  are marginal pdfs of 
multivariate distribution of X  with prescribed 
covariance matrix ∑  and prior function ( )α x , with 

, then the MEMPD is uniquely given by nE R∈ ⊆x

( ) ( )
1 1( ) ( ) ( ) ( )M n nf f x f x e μ μα ′− Λ −= x xx x L , E∈x , 

Where Eμ = X , and 1,  , nf fL  and  can be obtained 
by solving the following system of equations. 

Λ

 
Proof.  Since the marginal pdfs of ( )f x  are prescribed, 
for any function ( )i iK X  

( ( ));
iK i iE K Xμ =      (7) 1, ,i = L n

are known. Prescribed 1, , ng gL  and covariance matrix 
are equivalent to prescribed  and (i iEK X )

i j i i j jE X X, ( )( )μ μ= − − , 1, , n= L  i j  (8) σ

where ,i iEXμ =  1, ,i n= L . Now MEBPD can be 
fined by maximization of (1) with constraints (7) and 
(8). The Lagrangian is given by 

1

, ,
1 1

, ,
1 1 1

( ) ln ( ( ) )

( ( )( ) )

.

i

i

n

i i i K
E E

i

n n

i j i i j j i j
E

i j

n n n

i K i j i j
i i j

fL f d K x fd

x x fd

λ μ
α

λ μ μ

λ μ λ σ

=

= =

= = =

= − + −

+ − −

− −

∑∫ ∫

∑∑ ∫

∑ ∑∑

x x

x σ−  

Since 
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1

,
1 1

( ) ln ( )
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i j i i j j
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is a concave and continuous function of f, the unique 
extermal solution maximizes entropy. Therefore 

1

,
1 1

{ ln ( ) }

( )( )

n

i i i
i

n n

i j i i j j
i j

ff K x f
f

x x f

λ
α

λ μ μ

=

= =
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− +
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and MEMPD is given by 

1 1 1

,
1 1

( ) ( )
1 1

( ) ( ) exp{ ( )} exp{ ( )}

.exp{ ( )( )}

( ) ( ) ( ) ,

M n

n n

i j i i j j
i j

n n

f K x K x

x x

f x f x e μ μ

α λ λ
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α

= =

′− Λ −

=

− −

=

∑∑
x x

x x

x

L

L

 

where  Since , ,[ ]i j n nλΛ = . Mf  has the marginals 

1, , ng gL  and covariance matrix , the functions ∑

1, , nf fL  are obtained by solving the system of 
Equations (6). 

Theorems 1 and 2 can easily be extended for discrete 
multivariate random variables by replacing integrals 
with summations. 

3. Numerical Methods 

Since the integral and functional Equations (4) and 
(6) can not be always solved analytically, we consider 
two numerical methods to obtain the MEMPD in special 
case. Suppose we want to determine the MEBPD over 
the region 

2{( , )E x y R a ≤= ∈ 1 2, ( ) ( )}x b C x y C x≤ ≤ ≤  

    2
1 2{( , ) , ( ) ( )},x y R c y d D y x D y= ∈ ≤ ≤ ≤ ≤  

(Figure 1) with given marginal pdfs g and h on ( ) 
and ( ) respectively, and uniform prior distribution 
over E. 

,a b
,c d

By Theorem 1 the general form of MEBPD is given 
by 

1 2( , ) ( ) ( )Mf x y f x f y= ,   ( , ) .x y E∈  (9) 

Here two numerical methods for approximation of 1f  
and 2f  are considered, that can easily be extended to 
approximate MEMPD. 
 
Method 1.  Suppose 1( )f x  and 2 ( )f y  can be expanded 
in power series 

1
0

( ) ,n
n

n

f x A x
∞

=

=∑  2
0

( ) .n
n

n

f y B y
∞

=

=∑  

The marginal pdfs of Mf  can be written a 

1 1
2 1

0 0

( ) ( ) ( ( ) ( )),
1

ji j j
i

i j

B
g x A x C x C x

j

∞ ∞
+ +

= =

= −
+∑ ∑  (10) 

and 

1 1
2 1

0 0

( ) ( ) ( ( ) ( ).
1

j i ii
j

j i

Ah y B y D y D y
i

∞ ∞
+ +

= =

= −
+∑ ∑  (11) 

Now the coefficients  and  can 
be found by joining the Equations (10) and (11) in the 
following steps. 

1 2, ,A A L 1 2, ,B B L

 

Step 1.  Let , 
0

n
n

n

G x
∞

=
∑

0

n
n

n

H y
∞

=
∑ ,  and 

 for 

,

0

k j n
n

n

C x
∞

=
∑

,

0

k j n
n

n

D y
∞

=
∑ 1,  2k =  and  uniformly 

converge to 

1,  2,  j = L

( )g x , ,  and  

respectively, where 

( )h y ( )j
kC x ( )j

kD y

0
1 ( ) ,
!

n

n xn
dG g x

n dx ==  

0
1 ( ) ,
!

n

n yn
dH h y

n dy ==  ,
0

1 ( )
!

n
jk j

n xkn
dC C x

n dx == , 

and ,
0

1 ( )
!

n
jk j

n ykn
dD D y

n dy == . 

 
Step 2.  By taking derivations of Equation (10) and 
putting 0x = , for each 0,1, ,k = L  we have 

( )

0 0

1 1
02 1

0

(0) ( )

( ( ) ( ))
1

k k i i
k j

jk i i
i j

j j j
x

j

k d dg A x
i dx dx

B
C x C x

j

∞−

−
= =

∞
+ + ,=

=

⎧⎛ ⎞⎪= ⎨⎜ ⎟
⎝ ⎠⎪⎩

⎫⎡ ⎤⎪⎢ ⎥− ⎬+⎢ ⎥⎪⎣ ⎦⎭

∑ ∑

∑
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so that 

2, 1 1, 1

0 0

( )
1

k
j j j

k k i i i
i j

B
G A C C

j

∞
+ +

−
= =

= −
+∑ ∑ ,  

                                                           (12) 0,1, ,k = L

and 

2, 1 2, 1

0 0

( )
1

k
j j j

k k i i i
i j

A
H B D D

j

∞
+ +

−
= =

= −
+∑ ∑ ,  

                                                           (13) 0,1, .k = L

 
Step 3.  Now 1f  and 2f  can be approximated by Taylor 
series with ( ) terms. The coefficients 1+n

0 1, , , nA A AL  and  are obtained from 
solving the system of Equations (12) and (13) by 
Newton's method. 

0 1, , , nB B BL

 
Step 4.  The approximate MEBPD is now given by 

1 2
ˆ ˆ ˆ( , ) ( ) ( ),Mf x y f x f y=      ( ,x y ) .  (14) E∈

 
Example 1.  Let 2{( , )E x y R= ∈ 0 1x y< < < } , 

2( ) 4 (1 )g x x x= − ,  and . 
By Step 1 we have 

0 x< <1 <3( ) 4 ,  0 1h y y y= <

0
1 ( ( )) ,
!

n

n xn
dG g x

n dx == 0
1 ( ( )) ,
!

n

n yn
dH h y

n dy ==  

,
0

1 ( ( ))
!

n
jk j

n xkn
dC C x

n dx == , 

1( ) ,C x x= 2 ( ) 1,C x = 1( ) 0,D y =   2 ( )D y y=

and 

1 2
0 1

( ) ,  ( )n n
n n

n n

f x A x f y B
∞ ∞

= =

= =∑ ∑ y . 

Now by Step 2 the coefficients of expansion for the 
marginals g and h respectively are given by 

0 0,G =    1 4,G = 2 0,G = 3 4,G =−    0,nG = 4n ≥

3 4,H =    0,nH = 3n ≠

Also we have 

1,
1    n j

0    n j
j

nC
=⎧⎪= ⎨
≠⎪⎩

 ,  , 2,
1    n j

0    n j
j

nC
=⎧⎪= ⎨
≠⎪⎩

2,
1    n j

0    n j
j

nD
=⎧⎪= ⎨
≠⎪⎩

  ,  . 1, 0,   j
nD n= ∈N

In Step 3, by solving the nonlinear system of 
Equations (12) and (13), we get 

8    ( , ) (1,1)

0    ( , ) (1,1)
i j

i j
A B

i j

=⎧⎪= ⎨
≠⎪⎩

 

Therefore by Step 4 we have 

( , ) 8 ;Mf x y xy=
)

       ( , )x y E∈ . 

 
Method 2.  From (9) the marginal pdfs of Mf  are 

2

1

( )
1 2

( )
( ) ( ) ( ) ;

C x

C x
g x f x f y dy= ∫      a ,x b< <  (15) 

2

1

( )
2 1

( )
( ) ( ) ( ) ;

D y

D y
h y f y f x dx= ∫          (16) .c y d< <

Now we subdivide E into subregions like Figure 1. 

1

2

0 1 1

0 1 1

,

,

n

n

a x x x b

c y y y d

+

+

= < < < =

= < < < =

L

L
 

1

1

,

,

i i i

j j j

x x x

y y y

−

−

Δ = − =Δ

Δ = − =Δ
   

1

2

2,3, ,

2,3, ,

i n

j n

=

=

L

L
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Figure 1.  Gridded E in R2. 
 

From (15) and (16), for each  and 11 i n≤ ≤ 21 j n≤ ≤ , 
we have 

2 1 2 1
1

( ( )) ( )( ) ( ){ ( ( ))
2

i i
i i i

f C x f y
1 1 ig x f x y C x+

= −  

2 2 , 1)
, 1( )ik i ky y −−

2

( ) (
2

in
ik i k

k

f y f y −

=

+
+∑  

}2 2 2
2

( ) ( ( ))
( ( ) )

2
i

i

in i
i in

f y f C x
C x y

+
+ − , 

1 1 1 1
2 1

( ( )) ( )
( ) ( ){ ( ( )

2
j j

1 )j j j
f D y f x

h y f y x D y j
+

= −  

1 1 , 1
, 1

2

( ) ( )
( )

2

jn
jk j k

jk j k
k

f x f x
x x−

−
=

+
+ −∑  

1 1 2
2

( ) ( ( ))
( ( ) )}

2
j

j

jn j
j jn

f x f D y
D y x

+
+ − .

n

n

 

By replacing the following approximations: 

2 1 2 1 2 2 2( ( )) ( ),  ( ( )) ( )
ii i i if C x f y f C x f y= =  

 1,1 i n≤ ≤

1 1 1 1 1 2 1( ( )) ( ), ( ( )) ( )
jj j j jf D y f x f D y f x= =  

 2.1 ,j n≤ ≤

we have 

{1 2 1 1 1( ) ( ) ( )( ( )i i i i

             2 1 2 2[ ( ) 2( ( )
2 i if y f yΔ

+ + +L  

              2 ,( 1) 2( )) (
i ii n inf y f y−+ + )]

,
i

j

              (17) }2 2( )( ( ) )
iin i inf y C x y+ −

2 1 ,1 ,1 1( ) ( ){ ( )( ( ))j j i jh y f y f x x D y= −  

             1 1 1 2[ ( ) 2( ( )
2 j jf x f xΔ

+ + +L  

             1 ,( 1) 1( )) (
j ij n jnf x f x− )]+ +  

             1 2( )( ( ) )}
jjn j jnf x D y x .

j
+ −  (18) 

Since the Equations (17) and (18) are related, we set 
one of the nonzero and unknowns 1( )if x  or 2 ( )jf y  to 

be equal to 1, then the other unknowns can be found 
from (17) and (18). Now, we fit two smooth curves 1̂f  

and 2̂f  over intervals ( ) and ( ). Then an 
approximate of MEBPD over E is given by (14). Now 
three methods for fitting smooth curves to 

,a b ,c d

1f  and 2f  
are considered. 
 
Method 2.1.  The approximation of a function by cubic 
spline with not-a matrix -knot end conditions, meaning 
that it is the unique piecewise cubic polynomial with 
two continuous derivatives with breaks at all interior 
data sites except on the leftmost and the rightmost one, 
is illustrated in Example 2 [13]. 
 
Example 2. Let 2{( , ) 0 1,0 1}E x y R x y x= ∈ < + < < <  
and the marginal pdfs of Mf  be Beta (2,3). By Method 
2, we have 

1 2
1 2

0

(5)( ) ( ) ( ) (1 ) ,
(2) (3)

x
g x f x f y dy x x

− Γ
= =

Γ Γ∫ −  

 0 1x< <  

1 2
2 1

0

(5)( ) ( ) ( ) (1 ) ,
(2) (3)

y
h y f y f x dx y y

− Γ
= =

Γ Γ∫ −

y

 

 .0 1<  <

Since this problem is symmetric, so 1 2 .f f f= =  By 
letting 0,  0.1,  ,  0.9x = L  and solving the following 
system of equations 

)ig x f x f y y C x= −  
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[ ]

[ ]

[ ]

(0){ (0) 2 (0.1) (0.9) (1)} 0

(0.1){ (0) 2 (0.1) (0.8) (0.9)} 19.44

(0.2){ (0) 2 (0.1) (0.7) (0.8)} 30.72

f f f f f

f f f f f

f f f f f

+ + + + =

+ + + + =

+ + + + =

L

L

L

 

M  

(0.8){ (0) 2 (0.1) (0.2)} 7.68

(0.9){ (0) (0.1)} 2.16

f f f f

f f f

+ + =

+ =
 

we get 

(0) 0.0000, (0.1) 0.4899, (0.2) 0.9798,f f f= = =  

(0.3) 1.4697, (0.4) 1.9596, (0.5) 2.4495,f f f= = =  

(0.6) 2.9394, (0.7) 3.4293, (0.8) 3.9192,f f f= = =  

(0.9) 4.4091, (1) 4.4091f f= ≈ . 

By fitting a cubic spline to this set of points, we have 

( )f x =
)

 

3 2

3

3 2

3 2

3 2

3

0.0075 0.0023 4.8991 0 0.1

0.0075 4.8989 0.4899 0.1 0.2

0.0376 0.0023 4.8991 0.9798 0.2 0.3

0.1428 0.0090 4.8985 1.4697 0.3 0.4

0.5336 0.0338 4.9009 1.9596 0.4 0.5

1.9916 0.

x x x x

x x x

x x x x

x x x x

x x x x

x

− + ≤ ≤

+ + ≤ ≤

− + + + ≤ ≤

− + + ≤ ≤

− + + + ≤ ≤

− 2

3 2

3 2

3 2

3 2

1263 4.8917 2.4495 0.5 0.6

7.4329 0.4712 4.9262 2.9394 0.6 0.7

27.7404 1.7587 4.7974 3.4293 0.7 0.8

103.5276 6.5634 5.2779 3.9192 0.8 0.9

103.5276 24.4949 3.4848 4.4091 0.9

x x x

x x x x

x x x x

x x x x

x x x x

+ + ≤ ≤

− + + + ≤ ≤

− + + ≤ ≤

− + + + ≤

− − + + ≤ 1

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

≤

≤

 

Now an approximate of MEBPD over E can be 
determined by (14) which is shown in Figure (2). 
 
Method 2.2.  Suppose we want to fit a Fourier series to 

( )f x ;  and , by using the following set 
of data 

a x b≤ ≤ 0a >

1{( , ( )) 0,1, , 1}.i ix f x i n= L +  (19) 

We define 

( )    
( )

0          0

f x a x b
g x

x a

≤ ≤⎧⎪= ⎨
≤ ≤⎪⎩

 

and outside of this interval ( ) ( 2 )g x g x l= +  where 
 The Fourier series corresponding 2l a= . ( )g x  is given 

by 

0

1

( )
2 n n

i

A n x n xA Sin B Cos
l l
π π∞

=

+ +∑ . 

The coefficients can be approximate by 

1

0

ˆ ( )
n

i
n i

i

n xA f x Cos
l l

π

=

Δ
= ∑ , 

1

0

ˆ ( )
n

i
n i

i

n xB f x Sin
l l

π

=

Δ
= ∑ . 

Then 

0

1

ˆˆ ˆ ˆ( ) ( ),
2 n n

n

A n x n xf x A Sin B Cos
l l
π π∞

=

= + +∑  

is an approximation of ( )f x  over the interval ( , . )a b
 

Method 2.3.  To expand ( );f x a x b≤ ≤  into the 
Hermite series. We define 

( )    
( )

0          0

f x a x b
g x

x a

≤ ≤⎧⎪= ⎨
≤ ≤⎪⎩

 

therefore 

1

( ) ( )n n
n

g x A H
∞

=

=∑ x  

where 

21 ( ) ( ) ,
2 !

x
n nn R

A e f x H x dx
n π

−= ∫  

2 2
( ) ( 1)

n
n x x

n n
dH x e e
dx

−= − ,     0,  1,n = L

To fit a Hermite series into the set of data (19), we 
approximate coefficients by 

1 2

0

ˆ ( ) ( )
2 !

k

n
x

n kn
k

n kA e f x H x
n π

−

=

Δ
= ∑ . 

Now an approximate of ( )f x  over the interval 
 is given by ( , )a b
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1

ˆ ˆ( ) ( )n n
n

f x A H
∞

=

=∑ x . 

 

 

Figure 2.  Plot of approximate MEBP distribution. 

4. Results and Discussions 

The determination methods of MEPD for univariate 
probability distribution functions are extended for 
multivariate cases via Bayesian entropy. Two numerical 
methods for determination of the maximum entropy 
bivariate probability distributions with unavailable 
analytical solutions are also given. It should be noted 
that the solving of the system of equations in the 
proposed methods for MEMPD via Bayesian entropy is 
very complicated. Therefore, providing a fast 
computational method for these cases is required. Since 
the MEMPD with Shannon’s measure of entropy can be 
obtained by choosing a uniform prior distribution in the 
Bayesian entropy, it seems that other measures, say 
Renyi’s, Kapur’s, Havrada and Charvat’s and Burg’s 
measures of entropy can be considered to find MEMPD, 
that needs further studies. 
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