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Abstract 

In this paper, using the tight-binding model, we extend the real-space 
renormalization group method to time-dependent Hamiltonians. We drive the 
time-dependent recursion relations for the renormalized tight-binding Hamiltonian 
by decimating selective sites of lattice iteratively. The formalism is then used for 
the calculation of the local density of electronic states for a one dimensional 
quantum wire with time-dependent random potential. Specifically, we study the 
electronic densities of states of a single and chains of quantum dots connected to 
two noisy leads. 
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1. Introduction 

Nowadays, nanostructures are commonly employed 
in electronic and optoelectronic devices [1,2] especially, 
devices based on one-dimensional (1D) systems have 
received considerable attentions [3]. Within the 
theoretical methods for studying 1D systems, the 
technique of the real space renormalization group, due 
to its simplicity, has been used extensively, both for 
ordered and disordered time-independent systems [4]. 
Many nanostructures,  such as quantum dot, in 
connection to leads experience time dependent random 
potentials, either through their interactions with the 
environment or the inherent noise present in the 
system[5-7]. So, it is vital to determine their effects on 
the electronic properties of the nanostructures. In this 
paper, we extend the real-space renormalization group 
method (decimation method) to time dependent 
problems. Firstly, wederive the time-dependent 
recursion relations for the renormalized 1D tight-

binding (TB) Hamiltonian.  Then, regarding  reference 
[8], we extend the formalism to TB Hamiltonians with 
time-dependent random potentials. At the end, we apply 
the developed formalism to study the densities of 
electronic states of a single and chains of quantum dots 
in contact with two noisy leads. 

2. Theory 

The real-space renormalization group method is a 
technique for calculating the Green's function and the 
density of states of an ordered (disordered) system. The 
method consists of an iterative procedure for obtaining 
the local Green's function of a given Hamiltonian by 
decimating selective sites [8,9]. It is, particularly, a 
simple approach for the study of TB Hamiltonian with 
nearest-neighbor hopping in one dimension. In this 
section, we extend the method to the time-dependent 
one dimensional systems. We use TB Hamiltonian with 
time-dependent on site potential and nearest-neighbor 
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where  is the on-site static potential and Vn(t) and 
Tn,n±1(t,t1), are respectively, time-dependent on-site 
potential and nearest neighbor hoppings. 
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The time-dependent Green's function associated with 
the above Hamiltonian satisfies the following time 
evolution equation 
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An iterative procedure can now be used to solve for 
 by eliminating the equations containing odd 

sites and re-numbering the sites, at each iteration step. 
After each iteration the resulting equation has a 
structure similar to Equation (3) but with renormalized 
on-site Green's function and hopping terms. After jth 
decimation the renormalized quantities, are given by the 
recursion relations 
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t t ′∑  are, respectively, the renormalized 

hopping term, on-site Greens
,
 function and the self-

energy after the jth decimation. 
To use the above recursion relations, the equation for 

( )
( ) ( , )j
mg t t ′  at each iteration step should be solved. This 

equation is an integro-differential equation which can be 
solved iteratively. It should be mentioned that all the 
Green's function are retarded. The above formalism can 
also be used for random time-dependent potentials 
concerning  references [8-10]; i.e. at each step of 
decimation the dependence of the renormalized 
quantities on the readom potentials associated with 
decimated sites are averaged [11,12]. 

The quantity of fundamental importance for applying 
the time-dependent RG method to random time-
dependent potentials is the averaged on-site Green's 
function which we denote it by ( )

( ) ( , )j
mg t t ′ . The 

averaged on-site Green's function should be determined 
at each step of the iteration by solving the averaged 
form of Equation (6). To obtain the equation for 
averaged on-sit Green's function, we rewrite Equation 
(6) as 
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Denoting the averaging over the random potentials 
by ... , we have to determine the average of products 

of (0) '
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Thus, the equation that determines the averaged on-
site Green's function is 
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Using Equations (4) and (5) the averaged value of 
renormalized hoppings can be calculated once the 
averaged on-site Green's function is determined. 

3. Applications and Results 
In this section the formalism of time-dependent 

renormalization group will be used to study the effects 
of noisy leads on the densities of states of a single and 
chains of quantum dots. For simplicity, we consider a 
quantum wire in TB approximation where all the sites, 
except a finite number of them, are driven by time-
dependent  random potential, . For simplicity, we 
assume that the hoppings between the leads and the 
quantum dots are equal to the hoppings within the leads 
and they are independent of time. The Hamiltonian of 
the dots and the leads takes the simple from 
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where  are the on-site static potentials and '
mv s ( )mV t s′  

are zero on the dots. We, also, choose  to be 
Gaussian noise with 
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where ( )n t s′Φ  are test functions. Functionally 
differentiating the generating function with respect to 
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Using the generating functional for Gaussian noise, 
Equation (13), the right hand side of the Equation (15) 
can be determined exactly and the averaged on-site 
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Green's function is given by 
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for the Hamiltonian given by Equation (11), we can use 
the recursion relations (4), and (5), and Equations (7), 
and (8), after averaging the decimated sites, to obtain 
the renormalized hoppings and on-site Green's function. 
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which has the form of Dyson equation. Equation (19) 
can be solved for ( ) ( )j

mg E , which gives us 

( )
( )

( )(0)

( )
( )

1 ( ) (

o
mj

m j
m m

g E
g E

)g E E
=

− ∑
 (20) 

We can, also, FT the recursion relations, Equations 
(4) and (5), for renormalized hoppings and Equation (7) 
for . This reduces Equations (4), (5) and (7), 

respectively, to 

( ) ( , )j

m
t t ′∑

( )

( 1) ( 1) ( 1) ( )

( )
, 2

( 1) ( 1) ( 1)
, 2 2 2 , 2

( )

( ) ( ) ( )

j

j j j j

j
m m

j j j
m m m m m

T E

T E g E T− − −

+

− − −
+ + + +

=

− E

E

E

 (21) 

( )

( 1) ( 1) ( 1) ( )

( )
, 2

( 1) ( 1) ( 1)
, 2 2 2 , 2

( )

( ) ( ) ( )

j

j j j j

j
m m

j j j
m m m m m

T E

T E g E T− − −

−

− − −
− + − −

=

−
 (22) 

and 

( 1) ( 1) ( 1) ( )

( 1) ( 1) ( 1) ( )

( )

( 1) ( 1) ( 1)
, 2 2 2 , 2

( 1) ( 1) ( 1)
, 2 2 2 , 2

( )

( ) ( ) ( )

( ) ( ) ( )

j j j j

j j j j

j

m

j j j
m m m m m

j j j
m m m m m

E

T E g E T E

T E g E T

− − −

− − −

− − −
+ + + +

− − −
− − − −

=

− −

∑
 (23) 

Equations (20)-(23) including Equation (16) 
constitute the renormalized recursion relation for a 
system driven by a Gaussian noise. 

We now consider the effects of noisy leads with 
Gaussian distributions on the local densities of states of 
a single and finite chain of quantum dots. For a single 
quantum dots, we assume that the dot is located at the 
site m= 0 and the Gaussian noise acts on all the sites of 
left and right leads with a same strength. Figure 1 
represents the local densities of states for three different 
values of mF s′ . Figures 2 and 3 depict, respectively, the 
local densities of states of a quantum dot located at site 
m = 0 within the chains with 11 and 19 quantum dots for 
two different values of mF s′ . We observe from Figure 1 
that in the case of a single quantum dot the noise in the 
leads causes the states of the dot to become more 
localized around zero energy state. The effect of 
localization also appears in the chains. For weak noise it 
manifests itself as an oscillation in the local densities of 
states. As the strength of noise increases, the states of 
quantum dot become more localized around definite 
 
 

 

Figure 1.  The local densities of states of a single quantum dot 
connected to noisily leads, for four different values of Fm s′  in 
unit of hopping integral. 
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Figure 2.  The local densities of states of a quantum dot 
located at m=0 within the chain of eleven quantum dots, 
connected to noisy leads for two different values of mF s′  in 
unit of hopping integral. 
 

 

 

Figure 3.  The local densities of states of a quantum dot 
located at m=0 within the chain of nineteen quantum dots, 
connected to noisy leads for two different values of mF s′  in 
unit of hopping integral. 

 
 
 
 
 
 
 
 
 
 
 
 

energy values. These behaviors of local densities of 
states are reminiscence of a leaky double barriers; i.e. 
each noisy lead acts as a leaky barrier for electrons in 
the quantum dot or in the chains. 

In conclusion, in this paper we have presented the 
time-dependent real space renormalization group 
method which is a versatile numerical technique for 
studying the effects of various time-dependent random 
potentials with any kinds of distributions [13,14]. We 
have then used the proposed method for studying the 
effects of noisy leads with Gaussian distribution on the 
densities of states of single and chains of quantum dots. 
The method can, also, be extended to include, 
concurrently, static as well as time-dependent random 
potentials and hopping integrals. 
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