
Journal of Sciences, Islamic Republic of Iran 16(2): 169-173 (2005) http://jsciences.ut.ac.ir
University of Tehran, ISSN 1016-1104

Parallel Generation of t-ary Trees

H. Ahrabian* and A. Nowzari-Dalini

Department of Mathematics and Computer Science, Faculty of Sciences, University
of Tehran, Tehran, Islamic Republic of Iran

Abstract

A parallel algorithm for generating t-ary tree sequences in reverse B-order is
presented. The algorithm generates t-ary trees by 0-1 sequences, and each 0-1
sequences is generated in constant average time O(1). The algorithm is executed
on a CREW SM SIMD model, and is adaptive and cost-optimal. Prior to the
discussion of the parallel algorithm a new sequential generation with O(1) average
time complexity, and ranking and unranking algorithms with O(t n) time
complexity is also given.

Keywords: t-ary Trees; Parallel algorithm; B-order; 0-1 Sequences; Recursion

* E-mail: ahrabian@ut.ac.ir

1. Introduction

A few parallel algorithms for t-ary trees are presented
by Stojmonovic and Akl [5], Vajonovszki and Phillips
[16,17], and Kokosinski [10]. In [5], trees are
represented by an inversion table and the processor
model is a linear array multiprocessor. The generated
integer sequences corresponding to the t-ary trees of n
nodes in this algorithm are of length n and the parallel
algorithm is executed with n processor. In [16], trees are
represented by 0-1 sequences and the algorithm is run
on a shared memory multiprocessor. Vajonovszki and
Phillips [17] also presented a parallel generating
algorithm for t-ary trees represented by generalized P-
sequences on a linear array. The latter two algorithms
generate sequences of length tn with tn processor.
Finally, Kokosinski [10] generated t-ary trees of n nodes
by 0-1 sequences in parallel with an associative model
with n processor.

The design of most parallel algorithms is based on
the sequential versions of them in the literature. There
exist several sequential algorithms for generating t-ary
trees [1,3,6,8,12-15,18,19].

In this paper we describe a parallel algorithm for
generating t-ary tree sequences in reverse B-order. This
algorithm is executed on a CREW SM SIMD model [4]
and is adaptive and cost-optimal, and the number of
processors can be much less than the other parallel
generation algorithms. As it is mentioned, all the
previous parallel algorithms for t-ary trees generate by
0-1 sequences are not presented as an adaptive
algorithm and the number of processors employed in
their models is of a fixed sized. Prior to the discussion
of our adaptive parallel algorithm a new sequential
generation, ranking and unranking algorithms are also
given. This sequential algorithm generates each 0-1bit
sequence in constant average O(1) and the time
complexity of ranking and unranking algorithm is O(tn).

The paper is organized as follows. Section 2
introduces the definitions and defines the notions to use
further. In Section 3, we introduce a new sequential
generation algorithm with ranking and unranking
algorithms. The parallel version of the sequential
generation algorithm is given in Section 4. Finally,
some concluding remarks are offered in Section 5.

 169

Vol. 16 No. 2 Spring 2005 Ahrabian and Nowzari-Dalini J. Sci. I. R. Iran

2. Definitions

The t-ary tree is a data structure consisting of a finite
set of n nodes which either empty (n=0) or consists of a
root and t disjoint children, and each child is a t-ary
subtree, recursively defined. A node is the parent of
another node if the latter is a child of the former. In a t-
ary tree an external node is a node without child and an
internal node is a node with exactly t children. An n-
node t-ary tree has (t-1)n + 1 leaves, and the total
number of t-ary trees with n internal nodes is denoted by
Cn,t and is known to have the value Cn,

t=
1 ()

(1) 1
tn
nt n− +

.

Let us introduce basic notations used through this
paper and a definition of t-ary trees by means of choice
functions of indexed families of sets [7,10,11].

Let < Ai > i I∈ denote an indexed family of sets Ai =
A, where A= {1, …, m}, I= {1, …, l}, and l, m ≥ 1. Any
mapping f which chooses one element from each set A1,
..., Al is called a choice function of the family <Ai> i

I∈ [11]. With additional restrictions we can model by
choice functions various classes of combinatorial
objects [7,9]. If Ai ={0, 1} and I={1, ..., l}, then any
choice function χ = < xi > i I∈ , that belong to the
indexed family < Ai > i I∈ , is called binary choice
function of this family. If l ≤ tn for a given t, each binary
choice function with the number of x1+ ...+ xi ≥ i/t, for 1
≤ i ≤ tn, is called binary choice function with t-
dominating properties. There exist bijections between
set of choice functions χ and sets of t-ary trees with n
internal nodes in widely used representations. All t-
dominating binary choice functions, with l = tn and the
number of x1+ ...+ xi = n, are bit string representations of
all t-ary trees of the set A [10]. This bit string
representation is called x-sequence and also known as
Zaks' sequence [19]. By t-dominating definition, in each
subsequence {xj}

i
1 (1 ≤ i ≤ tn) the accumulated numbers

of 1's is at least . In other words, if this
subsequence contains m 1's, then it contains at most
(t-1) m 0's.

/i t⎡⎢ ⎤⎥

For any given choice functions δ = <d1, ..., dl> and γ=
<g1, ..., gl>, we say that δ and γ are in decreasing
lexicographical order, if and only if there exists i ∈{1,
..., l} satisfying di > gi and dj = gj for every j < i.

The x-sequence can be obtained directly from t-ary
trees. Given a regular t-ary tree with n internal nodes,
we label each internal node with 1 and each external
node with 0. Reading tree labels in pre-order
(recursively, visit first root and then all the sub trees
from left to right), we get a bitstring with n 1's and (t-1)

n+1 0's. As the last visited node is an external node, we
omit the corresponding 0. For example, the x-sequence
corresponding to the tree presented in Figure 1 is
x=100101000.

Theorem. The following sets are in a 1-1
correspondence with each other [19]:

1) All the t-ary trees with n internal nodes,
2) All the 0-1 sequences {xi} with n 1's and (t-1) n

0' s having the t-dominating property.
1
tn

In order to design an algorithm for generating the set
of trees, an ordering is to be imposed; one of these
ordering is B-order. This ordering is defined as follows
[19].

Definition. Given two t-ary trees T and T', we say T <
T' in B-order if

1) T is empty and T' is not empty, or
2) T is not empty, and for some i (1 ≤ i ≤ t)
 a) Tj =T ′ j for j = 1, 2, ..., i-1, and
 b) Ti < T ′ i in B-order.
Our both generation algorithms in sequential and

parallel, which are given in the next section, produce the
0-1 sequences in decreasing lexicographical order such
that their corresponding t-ary trees are in reverse B-
order.

3. Sequential Generation

In this section we give a new sequential generation
algorithm for t-ary trees in reverse B-order with 0-1
encoding. The algorithm GenX-Seq given in Figure 2
generates 0-1 sequences corresponding to a t-ary tree.
The algorithm produces the tree sequences by
interchanging any adjacent 10 by 01, which causes a
right shift in the corresponding 1. The generation
sequence starts with the sequence 1n0(t-1)n. By the first
possible interchange the nth 1 in the sequence is shifted
one position to the right. By each right shift a new
sequence is generated. The last generated code by the
algorithm is (10t-1) n. It is clear that any right shift in this
sequence (last code) would violate the dominating
property. With regard to the last code the nth 1 can be
shifted N = (t – 1) n – t + 1 bits to the right of the initial
position, and consequently the (n - 1) th 1 shifted (t - 1)
(n - 1) - t+1 bits and respectively the (n - i) th (0 ≤ i < n)
1 can be shifted (t - 1) (n - i) - t+1 bits from the initial
position. Consequently ith 1 can be shifted up to t(i - 1)
+ 1th bit in the sequence. Clearly the position of the first
one is always unaltered.

The algorithm has two underlying recursions and
initially is called with X = 1n 0 (t-1) n, k= N+1, l= n - 1,

 170

J. Sci. I. R. Iran Ahrabian and Nowzari-Dalini Vol. 16 No. 2 Spring 2005

and q = 1. The total required time for the generation of
all the sequences is O(Cn,t), and easily can be proved to
be in constant average time O(1) per sequence [2]. It
should be noted that for obtaining a more efficiency the
parameter X in the algorithm could be deleted and
assumed to be a global variable. In this case after each
recursion call in the algorithm, a reverse 0-1 interchange
should be performed on X. Also we can convert the
recursive algorithm to an iterative algorithm such that
the algorithm generates the next sequence
independently. In this case the time complexity of the
algorithm in the worst case for generating one sequence
from another is O(n), and consequently complexity of
generation all Cn, t sequences would be equal to
O(n Cn,t).

We now show a ranking algorithm, i.e. an algorithm,
which gives the position of, a tree presented as 0-1
sequences in the reverse B-order list of sequences
corresponding to a t-ary tree. For ranking algorithm we
need to define the doubly indexed sequences G (1 ≤ l
≤ k ≤ n) for a fixed value t as follows:

k
l

1
1

-10 1
-1

G 1 1 0,

G G otherwise.

k
l

k k
l l

kl
t

−
−

⎧ ⎢ ⎥> +⎪ ⎢ ⎥⎣ ⎦⎪
⎪= =⎨
⎪

+⎪
⎪
⎩

,

Where G is the number of 0-1 sequences with k
l

1
1

k t
t
+ −⎢

⎢ −⎣ ⎦
⎥
⎥ ones that hold the dominating property and

beginning with at least 1
1

k t
t
+ −⎢

⎢ −⎣ ⎦
⎥
⎥ - l ones.

Lemma. The coefficients G l verify the following
relations [2]:

k

a) G = Cn,t , 1
1

N
n
+
−

b) G l =∑ , j < k & j < k 1

0

l
k
j

j
G −

−

1
1

k
t
−⎢

⎢ −⎣ ⎦
⎥
⎥ + 1.

With regard to the above Lemma and definitions of
G l , the ranking algorithm is given in Figure 3. The
required time for the above algorithm depends on the
length of sequence which is O(tn).

k

The unranking algorithm essentially reverses the
steps carried out in computing the rank. According to
the rank of a tree, the position of its sequence in the
reverse B-order list is specified. Therefore, this position

is obtained by using G 's (1 ≤ k ≤ N + 1, 1 ≤ l ≤ n). The
unranking algorithm is given in Figure 4. Clearly the
time complexity of the unranking algorithm is O(tn).

k
l

1

Figure 1. A 3-node 3-ary tree T, with encoding x={1, 0, 0, 1,
0, 1, 0, 0, 0}.

Procedure GenX-Seq (X: Xseq; k, l, q: Integer);
Begin
 If (k < N+1) Then Begin
 xN +n-k-l+1 := 0 ;
 xN +n-k-l +2 := 1 ;
 End;
 WriteXseq (X);
 If (k > 1) Then Begin
 GenX-Seq (X, k-1, 1, l);

 If (l < k) And (l < q) And (l <
1
1

k
t
−

−
⎢
⎢⎣ ⎦

⎥
⎥ +1) Then

 GenX-Seq (X, k, l+1, q);
 End;
End;

Figure 2. X-sequences generation algorithm in the reverse
order of B-order.

Function Rank (X: Xseq): Integer;
Var r, k, l, i: Integer;
Begin
 k := N+1 ; l := n - 1 ;
 i: = 1 ; r := 0 ;
 While (i ≤ t × n) and (l ≥ 0) Do Begin
 If (xi = 0) Then Begin
 r := r + G l ; k

 k := k - 1 ;
 End
 Else
 l := l - 1 ;
 i := i + 1 ;
 End;
 Rank: = r + 1;
End;

Figure 3. Rank algorithm.

0 0 1

0 0 1

0 0 0

 171

Vol. 16 No. 2 Spring 2005 Ahrabian and Nowzari-Dalini J. Sci. I. R. Iran

4. Parallel Generation Algorithm

In this section we present a parallel algorithm that
generates 0-1 sequences of the form {x1, x2, ..., xtn} as
defined in Section 2. The algorithm generates tree
sequences in reverse B-order. Our algorithm is cost-
optimal and adaptive and is executed on CREW SM
SIMD model with d processors. As it is mentioned in
the Section 2 the generation sequence starts with the
sequence 1n 0 (t-1) n and the last generated sequence is
(1 0t-1) n. The algorithm produces the next possible
generated codes by the right interchanging of the 1's in
the initial string. Each 1 can be shifted up to a specific
position.

The algorithm uses four arrays Y, Z, W of length n
and X of length tn, in shared memory. The ith elements
of these arrays are denoted by yi, zi, wi and xi,
respectively. Array X is simply an output buffer where
any new sequence generated is placed, and initial value
of it is 1n 0(t-1) n. The other three arrays are used to store
intermediate results, and are defined in the below.

1) Array Y holds the limit position for shifting of
each 1, and is set to

yi = t (i - 1) + 2 , 1 ≤ i ≤ n.

2) Array Z hold the position of 1's in the generated
code, and initially is set to

zi = i , 1 ≤ i ≤ n.

3) Array W keeps track of those 1's that have
reached their limiting position.

if ,

otherwise,

i i

i

True z y
w

False

=⎧⎪= ⎨
⎪⎩

and initially wi (1 ≤ i ≤ n) is false.
The algorithm given in Figure 5. It uses the

processors p1, … , pd. The arrays Y, Z, W are subdivided
to d subsequences of length and assigned to each
processor. As it is mentioned, the algorithm produce the
next possible generated code by the interchanging a 1
that the position is kept in array Z. This position is equal
to any i such that wi-1 = False and wi = True. For any
sequences unique position will have this property,
therefore only one of the processor can obtain this
position and keeps the index of this position in variable
k. Employing the array Z and variable k, the
corresponding 1 is right interchanged and the next
sequence is generated, and then array W and Z are
updated. Because of concurrent access of processors to
k and zk, therefore our computational model should be
CREW.

/n d⎡⎢

Function Unrank (r: Integer): Xseq;
Var X: Xseq; i, j: Integer;
Begin
 For i: = 1 To t × n Do
 xi := 0 ;
 i := 1 ; l := n - 1 ; k:=N + 1 ;
 While (i ≤ t×n) And (l ≥ 0) Do Begin
 If (r > S k

l) Then Begin
 xi:= 0 ;
 r := r - S ; k

l

 k := k - 1 ;
 End
 Else Begin
 xi:= 1 ;
 l := l - 1 ;
 End;
 i := i + 1 ;
 End;
 Unrank: = X;
End;
Figure 4. Unrank algorithm.

Procedure Parallel-GenX-Seq;
Var i, j, k: Integer; Flag: Boolean;
Begin
 WriteXseq (X);
 While (w1 = False) Do Begin
 k: = n ;
 For i: = 1 To d Do In Parallel
 For j: = (i-1) × /n d⎡ ⎤⎢ ⎥ + 1 To i × Do /n d⎡⎢ ⎤⎥

If (wj-1 = False) And (wj = True) And (j > 1) And
(j ≤ n) Then

 k := j-1 ;
 End;

kzx : = 0 ; zk := zk + 1 ;
kzx : = 1 ;

 For i: = 1 To d Do In Parallel
 For j: = (i-1) × /n d⎡ ⎤⎢ ⎥ + 1 To i × Do /n d⎡⎢ ⎤⎥
 If (j ≥ k) And (j ≤ n) Then Begin

jzx := 0 ;

 zj := zk + (j – k) ;

jzx := 1 ;
⎤⎥ End;

 End;
 If (zk < yk) Then
 WriteXseq (X);
 For i: = 1 To d Do In Parallel
 For j: = (i – 1) × /n d⎡ ⎤⎢ ⎥ + 1 To i × Do /n d⎡⎢ ⎤⎥
 If (j ≤ n) Then
 If (zj = yj) Then
 wj: = True
 Else
 wj := False ;
 End;
 End;
End;
Figure 5. Parallel version of GenX-Seq algorithm.

 172

J. Sci. I. R. Iran Ahrabian and Nowzari-Dalini Vol. 16 No. 2 Spring 2005

The time complexity of the algorithm depends on the
existing loops. All the parallel loops in the algorithm
performed in O(n/d). The main loop for generating all
the t-ary trees with n nodes is performed Cn,t times.
Thus, the overall time complexity of algorithm is T(n) =
O(nCn,t / d). Since the algorithm is employed d
processors, therefore its cost is C(n) = O(nCn,t), and with
regard to the time complexity of discussed sequential
algorithm Next, it is cost-optimal.

Our algorithm can be also implied to an EREW
model without violating the cost-optimality. If our
model alters to EREW, concurrent read can be
simulated by broadcasting the values of k and zk on
O(log d). Therefore, the complexity of the algorithm
would be equal to T(n) =O((n / d + log d) Cn,t, and the
cost is C(n) = O((n + d log d) Cn,t), which for d ≤ n /
log n is cost-optimal.

5. Conclusion

A Parallel generation algorithm for t-ary trees is
presented. This algorithm is the second parallel
algorithm for generation of t-ary trees in reverse B-order
with 0-1 sequences. The algorithm is executed on a SM
SIMD model. Both CREW and EREW model can
support the cost-optimality of the algorithm with
different number of processors. The algorithm is
adaptive and the number of processors is variable and
can be less than the number of internal nodes in a
t-ary tree.

The authors have implemented and tested the
algorithm in MPI on a 8 nodes Linux cluster system,
and for different values of n the cost-optimality is
obtained experimentally.

References
1. Ahrabian H. and Nowzari-Dalini A. Generation of t-ary

trees with Ballot sequences. Intern. J. Comput. Math., 80:

1243-1249 (2003).
2. Ahrabian H. and Nowzari-Dalini A. On the generation of

binary trees, from (0-1) codes. Ibid., 69: 243-251 (1998).
3. Ahrabian H. and Nowzari-Dalini A. On the generation of

P-sequences. Adv. Modeling Optim., 5: 27-38 (2003).
4. Akl S.G. The Design and Analysis of Parallel Algorithms.

Prentice Hall, Englewood Cliffs (1989).
5. Akl S.G. and Stojmenovic I. Generating t-ary trees in

parallel. Nordic J. Comput., 3: 63-71 (1996).
6. Er M.C. Efficient generation of k-ary trees in natural

order. Comput. J., 35(3): 306-308 (1992).
7. Kaprlski A. New methods for the generation of

permutations, combinations and other combinatorial
objects in parallel. J. Parallel Distrib. Comput., 17: 315-
329 (1993).

8. Korsh J.F. A-order generation of k-ary trees with 4k-4
letter alphabet. J. Infom. Optim. Sci., 16(3): 557-567
(1995).

9. Kokosinski Z. On the generation of permutations through
decomposition of symmetric group into osets. Bit, 30:
583-591 (1990).

10. Kokosinski Z. On parallel generation of t-ary trees in an
associative model. Lecture Notes in Computer Science,
2328: 228-235 (2002).

11. Mirsky L. Transversal Theory. Academic Press,
Washington (1971).

12. Pallo J. Generating trees with n nodes and m leaves.
Intern. J. Comput. Math., 21: 133-144 (1987).

13. Roelants Van Baronaigien D. and Ruskey F.Generating t-
ary trees in A-order. Inform. Process. Lett., 27(4): 205-
213 (1988).

14. Ruskey F. Generating t-ary trees lexicographically. SIAM
J. Comput., 7(4): 424-439 (1978).

15. Trojanowski E. Ranking and listing algorithm for k-ary
trees. SIAM J. Comput., 7(4): 492-509 (1978).

16. Vajnovszki V. and Phillips C. Optimal parallel algorithm
for generating k-ary trees. In: Woodfill M.C. (Ed.), Proc.
12th International Conference on Computer and
Applications, ISCA, Raleigh, 201-204 (1997).

17. Vajnovszki V. and Phillips C. Systolic generation of k-ary
trees, Parallel Process. Lett., 9(1): 93-101 (1999).

18. Yongjin Z. and Jianfang W. Generating k-ary trees in
lexicographic order. Sci. Sin., 23: 1219-1225 (1980).

19. Zaks S. Lexicographic generation of ordered tree. Theoret.
Comput. Sci., 10: 63-82 (1980).

 173

	1. Introduction
	2. Definitions
	3. Sequential Generation
	4. Parallel Generation Algorithm
	5. Conclusion
	References

