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Abstract

In this paper, we investigate the concept of topological stationary for locally
compact semigroups. In [4], T. Mitchell proved that a semigroup S is right
stationary if and only if m(S) has a left Invariant mean. In this case, the set of
values u(f) where w runs over all left invariant means on m(S) coincides with the
set of constants in the weak™ closed convex hull of right translates of /. The main
purpose of this paper is to prove a topological analogue (which is also a
generalization) of this theorem for locally compact semigroups.
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1. Introduction
Let S be a locally compact Hausdorff semigroup.
Let CB(S) be the algebra of all continuous functions on
S and Cy(S) be the subalgebra of CB(S) consisting of
functions which vanish at infinity. Let M (S) be the

Banach space subalgebra of all bounded regular Borel
(Signed) measures on S with total variation norm. Let

Mo(S)={ueM(S): u20,| ul=1}

be the set of all probability measures in M (S).

It is known that M(S)=Cy(S)* via the

correspondence ux — z where u(f)= J. fdu for any

fin Cy(S), [3, Sec. 14]. Consider the continuous dual
M(S)* of M(S). Denote by 1, the element 1 in
M (S)* such that 1(x) = u(S) for any x4 in M(S).

Also if T is a Borel subset of S, we define the
characteristic functional yr of T in M(S)* by
Xr(u)=wu(T) forany u in M(S).

Let X be a linear subspace of M (S)* containing 1.

An element M in X*is called a mean on X if
M@Q)=1 and M(F)=0, whenever F>0 as a

functional in M (S)*, i.e., F(u)>0 forall £>0. An
equivalent definition for a mean is that

Inf{F (1) 1 € M (S)}< M(F)
<SUp{F(u): e My (S)}

forany F in X.Also M € X* is amean if and only if
|| M]l=M(@Q)=1. The set of all means on X is a weak*

compact convex subset of X*. Each probability
measure u in My(S) is a mean on X if we put

u(F)=F(u), for any F in X. An application of
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Hahn-Banach separation Theorem shows that M,(S) is
weak* dense in the set of all means on X'

For FeM(S)" and weM(S), define [,F
e M(S)* by

(,Fv=(uOF)=F(ux*v), veM(S)
and define r,F e M(S)" by

(r,Fyv=(F Quyv=F(*u), veM(S)

For MeM(S)™ and FeM(S)" define
M ©F e M(S)* by

MOF) u=MFOu), peM(S)

andfor M, N € M(S)** define M © N e M(S)* by

(MON)F=M(NO®F), FeM(S)*

see [1] for details.
For seS,¢, denotes the Dirac measure at s. The

convolutions ¢, * u and u#* ¢, are defined for all f in
Cy(S) as following

| fdeg* pu=I[ f(xy)deg (x)du(y)
= [ f(s9)du(y) = (s 1) ()du(y)
and
[ fduxeg =11 f(xp)dp () de ()
— [ £ (e5)da(x) = (7, £)x)la()

We denote the natural isometric embedding of
M(S) into M(S)** by Q.

L[R] is the set of all left [right] translations of
M(S)” by elements of S (e, [, F=¢0

Flr, F=F ©¢] foreach se S and F e M(S)").

We denote A =Co(X£)= convex hull of £, and B=
Co (R). For FeM(S)*, 3x(F)cM(S)" [32(F)c
M (S)*]is given by

3r(F)=w*—cl(Co(R F))=w*-cl(BF)

=w*—cl{r,F:ue My(S)}
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32(F)=w*—cl(Co( L F ))=w*—cl( Af)
=w* —cH{l,F : i Mo(S)}

Rz (F)={a:aisreal, a.l €3x(F)}

Ry (F)={a:aisreal ,a.l €3¢ (F)}

REMARK. If ae R (F) then there is a net {x,}
in My(S) such that {r, F} converges weak* to a.l.
Similarly if a e Re(F) thenis a net {u,} in My(S)
such that {/, F} converges weak*to a.1.

LEMMA 1.1. a) If M, N are means on M(S)*, so
isMON;

by If ueM(S),M,NeM(S)*, Then QuOM =
raM and M © Qu=1I[M;

c) For fixed ux in M(S), Qu®© M is w*-w* conti-
nuous in the second variable and M © Qu is w*-w*
continuous in the first variable, for each M e M (S)*;

d) For fixed M e M(S)*,Themap N> NOM is
w*-w* continuous;

e) Q:M(S)—> M(S)™ is an isomorphism of the
algebra M(S) into M(S)*,i.e., QuO®© Qv=Q(u*v),
forany u,v in M(S);

f) If M is topological left invariant (i.e., for each
ueMy(S) and Fe M(S)*, M(u© F)=M(F)) and
N isameanon M(S)*,then NOM =M.

Proof. (a), (b), (c) and (d) are obvious [2, Sec. 2,
(B)]. We know that Q is isometry of M(S) into

M (S)™ and also is linear. For F in M (S)*, we have
(Ou © Qv)(F) = (1L,OV)(F)
=0v(l,F)
=Qv(uOF)
= (1O F)(v)
=F(u*v)
= O(u*v)(F)

Thus Qu©® Qv =0(u*v), which (e) is proved.
Now, by weak* density of the set M(S) in the set of
means on M (S)*, there is a net {u,} in My(S) such
that u, - N in weak* topology of M(S)™ (we
consider u,as a mean, u,(F)=F(u,) for each
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F e M(S)"). Thenby (d), 4, ©M - N O M weak*.
Now

HaOM =1 M=M

Since M is topological left invariant, hence

N © M =M which (f) is proved.

2. Topological Stationary Semigroups
T. Mitchell [4] proved that a semigroup S is right
stationary if and only if m(S) has a left invariant mean.

In this section we investigate the concept of topological
stationary for locally compact semigroups and we
present topological analogue of results of T. Mitchell.
DEFINITION 2.1. Let S be a locally compact
semigroup. S is called topological right stationary

[topological left stationary] whenever Rx(F)[Re
(F)]is nonempty, forall F in M(S)*.

REMARKS. a) If Rx (F) is nonempty, then there
exists a net {u, }in My(S) such that {r, F} converges

weak* to a constant functional in M (S)* for each
FeM(S)*. Similarly if Re(F) is nonempty, then
there is a net {u,} in My(S) such that {/, F}
converges weak* to a constant functional in M (S)* for

each F e M(S)*.

b) Definition 2.1 is a topological analogue as well as
an extension of the definition of T. Mitchell [4] for
discrete semigroups.

DEFINITION 2.2. For each M in M (S)**, define

a mapping My : M(S)" — M(S)" by (My(F))(u)
=M(F O u) forany FeM(S)* and pe M(S). The
operator M, is called the topological right introversion
of M . Similarly the topological left introversion
M, M(S)" > M(S)* is defined by (M, (F))(v)
=M(uOF) forany F e M(S)* and ue M(S).

LEMMA 23. a) My: M(S)* — M(S)" is boun-
ded and linear. Moreover ||M;(F)|IKIM (||| F | and
Mp(F)=M OF forany F e M(S)".

b) If M e M(S)™, FeM(S), u, veM(S),
then M, (u©@F)=uO©OM,(F).

c¢)For M, N € M(S)™, M © N is topological left

invariant if M is topological left invariant.
d) If M, > M in norm topology of A (S)**, then

(M) > My inuniform operator topology.
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Proof. a) Clearly M, is linear. For

Fe M(S)", u,veM(S),wehave

any

| (M g (F))(20) F| M (F) © e
M F © p]]

|(F O ) H F(uxv)|
STV

<ILE T2 1w 1

Thus || FF © ||| Flll ]|, and so

| (M g (E)) ) [ MIE T 1

Hence || Mz (F) ||| M ||| |- Also

(MR (F))(u) =M (F © p)
=(M O F)(u)
thus My(F)=M OF.

b)If peM(S),and F e M(S)*, we have

(M (1 ©F)()=M(vO(uOF))
=M((u*v) OF)
=M (F))(u*v)
=(nO M (F))v)

So M, (uOF)=uOM,(F).
c) Let M be topological left invariant, then for each
e My(S) and F e M(S)* we have

[, (M © N)(F)=((M ©N) © u)(F)
=((M ON)(u ©F)
=M (N («©F))
=M(u© N (F))
= M(N,(F))
=(M © N)(F)

d) First note that

(M) g =M ) (F) (1)
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= (M) (F) () = (M  (F) (1)
= M, (F © 1)~ M(F © p)
= (M, - M)(F © p)

= (M = M)p(F))(1)

So M, )g—Mp=(M,—-M), and by (a) we have,

(M) =M )E)[IH (M, = M) (F) ||

siM, - MIlILF |

now if M, — M in norm topology of M (S)™ then
(M) > My inuniform operator topology.

LEMMA24. a) M, :M(S)" — M(S)* is boun-
ded and linear. Moreover || M, (F)|<|M || F | and
M, (F)=FOM forany FF € M(S)";

by If M e M(S)™, FeM(S), u, veM(S),
then Mx(FO u)=My(F)O u;

c) For M ,N e M(S)™, M ON is topological
right invariant if N is topological right invariant;

d) If M, >M in norm topology of M(S)*,
then (M), — M, in uniform operator topology.

Proof. Similar to the proof of Lemma 2.3.

DEFINITION 2.5. A linear subspace X of M(S)*
is said to be topological left [right] introverted, if for
any mean M on M(S)*, M, (X)c X[My(X)c X].

THEOREM 2.6. Let X be a topological left
intorverted and topological left invariant linear subspace
of M (S)* containing the constants. Then the following

statements are equivalent:

a) X has atopological left invariant mean.

b) Forany F € X, there isamean M on X such
that

MuOF)=M(F) forevery peMy(S)

Proof. (a)= (b), is clear.

(b)= (a), Foreach F € X ,define R={M : M is
a mean on M(S)*, MuOF)=M(F) for any
1 My(S)}

By assumption R is nonempty. (BY Hahn-Banach
Theorem any mean on X can be extended to a mean on

M(S)*. We show that the family {Rr: F € X} has
the finite intersection property. When n=1, by
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assumption Ry, is nonempty. Assume m;?:‘llﬁpi is
nonempty. And let M e m’?‘lli%Fl_. Let ,...F, e X,

since X is topological left introverted, M, (F,) € X .
Put F=M,(F,). For this FeX there is a
mean N € R on X such that N(u©® F) = N(F) for
each peMy(S). By Lemma 1.1 (a), NOM is a
mean on X .Weshowthat NOM e mlfl 1%F.

For 1 <i<n-1 and for each u € M,(S) , we have
(M (FE)()=M(uOF)=M(F), (M eRg)
therefore for each u e My(S)

(M (F) (1) = (M (F;)-1)(x)
Hence
M (F)=M(F)1

and it follows that for 1 € M, (S) ,

(N © M)(u @ F)=N(M, (1 @ F))
=N(uO M, (F;)) (Lemma 2.3 (b))
= N(u© (M(F).D)
= N(M(F).1)
=N(M(F))

= (N ©M)(F)
Now, if e My(S), then

(NOM)(uOF,)=N(M_(uOF,))
=N(uO M (F,))
=NuOF)
= N(F)
=NM (F,))
=(N O M)(F,)

consequently NOM e N, ‘RFi. By weak* compact-
ness of the unit ball in A (S)** and the fact that R is
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weak* closed subset of the unit ball of A(S)™, it

follows that " {Rr: F e X }is nonempty. Since X is
topological left invariant linear subspace of M (S)*, any

mean in this intersection is a topological left invariant
meanon X .
Remark. There is a different proof for the above
theorem, when X = M (S)* as following [6].
Necessity: It is enough to show that the existence of
such M, for each F e M(S)* implies that for any
Hy Ho € Mo(S), d(( tn— ™ Mo(S)) ,0)=0, where

d( sy = py * My (S),

0) =inf{|| (1 — o) * pell: € M ()} [6, Proposition
211, p. 488]. Fix gy, u, in My(S) and let
X=(—)OMS) ={(14 —1)O F 1 F € M(S)" },
then X is a subspace of M (S)*. Forany F e M(S)*,
we must have inf{((z4 —1,) © F)(v):veMy(S)} <0.
Hence there isa mean M in M (S)** depending on X
such that M(F)=0 for any FeX (apply Theorem
2.12 in [6] to X). Since M(S) is weak*-dense in the
set of means of M (S)*, there is a net {u, }in My(S)
such that z, — M weak* in M (S)*. In particular, for
any F e M(S)",if G=(u -, )OF (Note that G is in
X), then F((u— )% ,)=G(uy) > M(G) =0
That is, 0 is in the weak closure of (g4 — ) * My(S)
which is equivalent to the part (c)= (a) of Theorem
2.12in [6], hence M (S)* hasa TLIM.

Sufficiency: Obvious.

REMARK. For discrete groups, this Theorem is due
to E. Granirer and A.T.M. Lau [5] and the first proof
follows the idea in [5].

THEOREM 2.7. Let X be a topological left
introverted topological left invariant linear subspace of
M (S)* containing the constants. The following
statements are equivalent:

a) X has atopological left invariant mean,

b) X istopologically right stationary,

c) For any FeX and a eRx(F), there is a
topological left invariant mean M on X such that
M(F)=a.

Proof. By Definition 2.1, (c) is equivalent to (b).

(@)= (b). Assume that X has a topological left
invariant mean M . Then there is a net {u,} in My(S)

such that x, > M in weak* topology of X*. Let
F e X, then
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(F O u,)(1) = (1 © F)(pty) =t (10 © F)

= M(uOF) =M (F)(u) =(M(F).1)(x)

for any ue M,(S), Hence { F © u, } converges to the
constant functional M(F). 1 M(S)*. That
iISM(F). 1e3x(F) and so M(F) € R (F). Hence
R« (F) 1is nonempty, so X is topological right
stationary, (b) = (a), For F € X, by definition of Rx
(F), there is a net {u,} in My(S) such that
{F © u, } converges weak* to a.1 in M(S)*. Without
loss of generality, we can assume that { «, } converges
weak* to some M in M(S)*™ by weak* compactness
in M(S)*™. Consider the
M(S)". We that

in

of the set of means
mean M © M on

MOM eR,.
Forany ue M(S)

show

(M (F) () =M (uOF)

=limu, (u©F)
=lim (F O u,) (u)
=(a1) (1)
Hence M, (F)=a.l.Foreach u e My(S)

(M @ M)( u®@F)=MM,( uO®F))
= M( 1 © M, (F))
= M(u©® (a.2)
=M (a.1))
= M(M, (F)

=(M © M)(F)

thus M © M e Re. So we have proved that for each
F e X, Re is nonempty. By Theorem 2.6, X has a

topological left invariant mean N in n{R¢: Fe X }.
Consider N © M , then

(N O M)(F)=N(M_(F))

= N(a.l)
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=a

Since N is a topological left invariant mean, so by
Lemma 2.3 (c), N © M is topological left invariant
meanon X .

COROLLARY 2.8. If Sis topological right
stationary then S is topological left amenable (i.e.,
M (S)* has a TLIM).

Proof. Assume S is topological right stationary, so
for each F e M(S)", Rx(F)is nonempty, say
a € Rx. (F) Hence there is a topological left invariant
mean M on M(S)* such that M (F)=a. By Theorem
2.7, ()= (a), M(S)* has a topological left invariant

mean.
THEOREM 2.9. Let S be a locally compact

semigroup, F, an arbitrary element of M(S)*, a eR
and M atopological right invariant mean on M (S)* . If
M (F,) =a then there exists a net { u,, } of elements of
My(S) such that:

(a) For any F' e M(S)", the net {r, F} converges

pointwise to a constant functional,
(b) The net {rua Fy} converges pointwise to a.1.

Proof. M(S) is weak* dense in the set of means on
M (S)*. So there exists a net { u, } in My(S) such that
{ 1, } is weak* convergentto M . Forany F € M (S)"

lim((ug ) (FD() =1imug (F © 1)

=M(F O u)
=M(F)

Hence {(w,),.(F)} converges pointwise to the
constant functional N.1 where N=M(F). On the
other hand,

((aag) (F)) () = pt (F © p2)
= (F © p,) (1)

= (r,, F)(1)

hence converges pointwise to constant

{r., F}
functional N.1, this proves (a). Now since M (Fy)=a,
then {r, Fo} is the required netin (b).

THEOREM 2.10. Let S be a locally compact
semigroup, then the following are equivalent:

Masiha and Riazi

372

J.Sci. . R. Iran

a) For every F € M(S)*, there exists a net { uz, }in
My(S) such that {r, Fy} converges pointwise to a
constant functional.

b) S is topological left amenable.

c) there exists a net {v,} in My(S), such that

{r,, F} converges pointwise to a constant functional

foreach F € M(S)*.
Proof. (a)=(b). By [4, Lemma 3], {r, F}

converges weak* to a constant functional. Thus Rz (F)
is nonempty. Hence S is topological right stationary.
Since M (S)* is left introverted (topological) linear
subspace of itself, so by Theorem 2.7, M(S)* has a
topological left invariant mean.

(b) = (c). Follows from Theorem 2.9 (a)

(c)= (a). Condition (c) is formally stronger than (a).

THEOREM 2.11. Let S be a locally compact
semigroup, which is topological left amenable. Let F;
be an arbitrary element of A (S)* and a be an arbitrary
real number then the following conditions are

equivalent:
(@) there exists a net {u,} in My(S) such that

{r,, Fo} converges pointwise to a.1.

(b) there exists a topological left invariant mean
M on M (S)* such that M (F,) =a.

Proof. (a)= (b). By Theorem 2.10, (a) implies (b),
M(S)* has a topological left invariant mean. Also by
Theorem 2.7, there exists a topological left invariant
mean M on M (S)* such that M (F,) =a.

(b)= (a). By Theorem 2.7, (c) implies (a), S is
topological left amenable, and by Theorem 2.9 (b), there
exists a net {u,} in My(S) such that {VﬂaFo}

converges pointwise to a.1.
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