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Abstract 

Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a 
correspondence between matrix valuations on R and some special subsets 
∑(MVPR) of the set of all square matrices over R, analogous to the 
correspondence between invariant valuation rings and abelian valuation functions 
on a division ring. Furthermore, based on Malcolmson’s localization, an 
alternative proof for the following result is presented. “There exists a natural 
bijection between the matrix valuations on R and valuated epic R-fields.” 
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Introduction 

In the classical commutative and non-commutative 
field theory, the equivalence of valuations and valuation 
rings are considered as a natural base for the study of 
these notions. In this paper we present a similar 
equivalence for matrix valuations by defining MVPRs. 

In a commutative ring R, the existence of a valuation 
function on R is a sufficient condition for the existence 
of a valuated epic R-field. Conversely, the restriction to 
R of any valuation on an epic R-field is a valuation on 
R. A generalization of this result for a non-commutative 
ring R, based on Cohn’s localization [1] and using the 
notion of matrix valuation, is given in [7] as: “There 
exists a natural bijection between the matrix valuations 
on R and the valuated epic R-fields.” 

In this note we give an alternative simpler proof for 
this result, which is based on Malcolmson’s localization 

[5,6]. This proof gives the valuation on epic fields 
directly and simplifies the computation. For an 
extensive study of the notion of matrix valuation one is 
referred to [2,3,8,9,10]. 

Definitions and Preliminaries 

In what follows, R, M(R) and GL(R) will represent, 
an associative ring with unit, the set of all square 
matrices, and the set of invertible matrices over R. 
respectively. A Krull valuation on R is a function :υ  R 
→ UΓ {∞ }, where Γ  is a totally ordered abelian 
additive group such that for all a,b ∈  R, 

)1.υ  υ (ab) = υ (a) + υ (b), 
)2.υ  υ (a + b)  min{≥ υ (a), υ (b)}, 
)3.υ  υ (a) = ∞  if and only if a = 0. 

Let D be a division ring, a subring R of D is called an 
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invariant valuation ring of D if: 
i)  d ∈D d ∈R or d −1 ∈R, ⇒
ii)  dRd −1 = R for all d ∈  D. 
The existence of this subring is equivalent to the 

existence of a Krull valuation on D. 
For any two matrices A and B over R we define the 

diagonal sum of A and B as: 

⎟
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⎜
⎜
⎝

⎛
=⊕

B

A
BA

0

0
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If A and B both are of size n × n, and agree except 
possibly in the first column, say A=(A1,A2,A3,…), 
B=(B1,A2,A3,…), then their determinantal sum with 
respect to the first column is defined as: A  B = (A1 + 
B1, A2, A3, …). Determinantal sum with respect to other 
columns or rows are defined similarly. A square matrix 
A is said to be non-full if it can be written as A=PQ, 
where P is an n × r,Q an r × n, and r < n; otherwise, A 
is called a full matrix. In a division ring, full matrices 
are invertible matrices and vice versa. A collection 

∇

℘  
of square matrices over R is said to be a matrix ideal of 
R if it satisfies the following conditions: 

 
MI.1 ℘ includes all non-full matrices. 
MI.2 If A,B  and if A∈℘ ∇ B is defined, then A∇ B 

. ∈℘
MI.3 If A ∈ , then A B  for all B ∈M(R). ℘ ⊕ ℘∈
MI.4 A 1 implies A ⊕ ℘∈ ∈℘ . 
 
Clearly a matrix ideal is proper if it does not contain 

the element 1. A matrix ideal ℘  is said to be prime if it 
is proper and 

 
MI.5 A B ∈ A  or . ⊕ ⇒℘ ℘∈ ∈℘B
 
A matrix valuation on R is a function V on M(R) with 

values in { } such that: UΓ ∞
 
MV.1 V (A ⊕ B) = V(A) + V(B), for all A,B ∈M(R). 
MV.2 V (A B) min {V(A), V(B)}, for all A,B 

M(R) such that A  B is defined. 
∇ ≥

∈ ∇
MV.3 V (A) is unchanged if any row or column is 

multiplied by −1. 
MV.4 V (1) = 0. 
MV.5 V (A) =  for any non-full matrix A over R. ∞
 
It is clearly seen that  the axioms of prime matrix 

ideal may be obtained by writing down the conditions 
on the set ℘=V −1 (∞ ). We may note some 

consequences of MV.1-MV.5, which we use later. 
 
MV.6 If A∇ B is defined and V(A) V(B), Then 

V(A
≠

∇ B) = min {V(A), V(B)}. 
MV.7 V(A) remains unchanged under any 

permutation of rows (or columns). 

MV.8 V = V = V(A) + V(B) for 

any C,D of appropriate size. 

⎟
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A 0

MV.9 V (AB) = V(A) + V(B) for square matrices A,B 
of the same order. 

Malcolmson’s Method 

A brief review of Malcolmson’s method is useful. A 
pair Q = (Σ ,S) is called a prime pair if Σ is a 
multiplicative set of matrices and S is a proper matrix 
ideal on R, such that if A,B∈M(R) and A B ⊕ ∈S, A 
∈ Σ , then B∈S. In this case Σ and S do not contain any 
matrix in common. Given a prime pair Q = (Σ ,S), 
denote by TQ the set of all triples (f,a,x) of matrices over 
R, where a Σ∈  (say of size n × n), f is 1×n and x is n×1. 
Define a relation ~ on TQ by requiring (f,a,x) ~ (g,b,y), if 
and only if 

.

0

0

0

S
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The relation ~ is an equivalence relation. Denote the 
set of equivalence classes, TQ /~ by RQ. Denote the 
equivalence class of (f,a,x) by (f/a\x), and define: 

(f/a\x) + (g/b\y) = ((f  g)/ \ ), ⎟
⎟
⎠

⎞
⎜
⎜
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x

(f/a\x).(g/b\y) = ((f  0)/ \ ); ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

b

xga
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⎛

y

0

− (f/a\x) = (f/a\-x). 

Define a map E: R RQ such that E(r) = (1/1\r) for 
r 

→
∈R. The above definition of operations gives rise to a 

well-defined ring structure on RQ, with additive and 
multiplicative identities E(0) and E(1), in which E is a 
ring homomorphism. If ℘ is a prime matrix ideal of R, 
denote by −℘ the set M(R)\℘ , which is multiplicative 
and the pair Q=(−℘ ,℘ ) is a prime pair. In this case RQ 
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(or R℘  for simplicity) will be a division ring and 

(f/a\x)−1 = ((0  1)/  ).
1

0
\
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Hence R has an epic R-field as a subset of RQ 
generated by the image of E. 

Results 

1. Identifying Matrix Valuation Pseudo Rings 
(MVPRs) 

Let V be a matrix valuation on a division ring D and 
let Σ ={A }. V 0)(:)( ≥∈ AVDM

This subset of M(D) has the following properties: 
 
(1) it contains all non-full matrices. 
(2) 1∈ . VΣ
(3) A,B  .VV BA Σ∈⊕⇒Σ∈
(4)  A,B and  is defined VΣ∈ BA∇ .VBA Σ∈∇⇒  )(∗  
(5)  .VV AIA Σ∈⇒Σ∈⊕

(6) or  VADGLA Σ∈⇒∈ )( .1
VA Σ∈−

 
It is possible to obtain some other properties of ,VΣ  

but they are not essential in our present study. Now, 
suppose that there exists a subset Σ of M(D), which has 
the above six properties, then the following also hold: 

 
(7) .Σ∈⊕⇒Σ∈⊕ ABBA  
(8) A,B are of the same size and Σ∈⊕ BA  

 .Σ∈⇒ AB
(9)  ⊕⇔Σ∈ BA ⊕A Σ∈−1B  for all  ).(DGLB∈
 
One can obtain these last three conclusions by 

invoking the kind of arguments used in [1.p.396]. 
In the following we introduce a method which shows 

that, given such a subset on M(D), there exists a 
matrix valuation V on D such that We do this in 
seven steps: 

Σ
.Σ=ΣV

 
(I). Define the following relation on GL(D). 
 
A ~ B βα =⇔    or   =α ,β−  where ,DetA=α  

,DetB=β  
 
Where “Det” denotes the Dieudonne’ determinant [4, 

p.133-140]. This relation is an equivalence relation. Let 
the set of all individual classes be S = GL(D)/~. 

(II). The following operation, similar to diagonal 
sum, on the elements of S gives a well defined group 
structure on S. This group is commutative. 

:⊕      
])[],([ BA

SS ×
           

a

→

][ BA

S

⊕

(III). Let H = { } and let L=H 
/ ~ . Then the group 

Σ∈∈ −1,);( AADGLA
),( ⊕L  is a subgroup of ).,( ⊕S  

 
(IV). Now consider the factor group LS /=Γ with 

the induced operation, which is an abelian group. 

},][;]{[/ SALALS ∈⊕==Γ  

:⊕    
)][,]([ LBLA ⊕⊕

Γ×Γ
       
a

→ Γ

.][ LBA ⊕⊕

(V). The abelian group Γwith the following relation, 
is a totally ordered group. 

 
For all Σ∈⊕⇔≥Γ∈ −1][][,][,][ BABABA  
 
The proof of (V). It must be shown that this is, a 

well-defined, total relation that admits the following 
conditions: transitivity, equality and consistency with 
the group operation. 

First we check that  is well-defined. Let ""≥
][][,][][ BBAA ′=′= and .][][ BA ≥  By definition 
,][][ LALA ⊕′=⊕  which implies  

or  Therefore or 
equivalently and this implies that 

  Similarly,  

 Now, if 

LLAA =⊕′⊕ − ][][ 1

.][ 1 LLAA =⊕′⊕ − LAA ∈′⊕ − ][ 1

HAA ∈′⊕ −1

,1−′⊕ AA .1 Σ∈′⊕− AA ,1−′⊕ BB

.1 Σ∈′⊕− BB ][][ BA ≥ , then , 
therefore  and then 

which implies  
or  so,  and 
consequently 

Σ∈⊕ −1BA
Σ∈′⊕⊕⊕ −− 11 BBBA

,11 Σ∈⊕⊕⊕′ −− BBAB Σ∈⊕′− AB 1

,11 Σ∈′⊕⊕⊕′ −− AAAB Σ∈′⊕′ −1BA
.][][ BA ′≥′  

For the consistency with the group operation, note 
that by “consistency” we mean: if ][][ BA ≥  and 

,][ Γ∈C  then ].[][][][ CBCA ⊕≥⊕  So, let ][][ BA ≥  
then  Since  and 

 then  

this implies that 

.1 Σ∈⊕− AB )(DGLC ∈

,11 Σ∈⊕⊕⊕ −− CCAB ,11 Σ∈⊕⊕⊕ −− BCCA

,][][  as desired. CBCA ⊕≥⊕
The rest properties can be proved in a similar way.  
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(VI). The function V on M(D) defined as follows, is a 
matrix valuation on D. 

V:          

fullnon

A

DM

−

)(

a

a

→

∞

∞Γ

][

}{

A

U

 

The proof of (VI). We will check all of the MV.1-
MV.5 conditions of the definition of matrix valuation, 
as follows: 

 
MV.1 ).()(][][][)( BVAVBABABAV ⊕=⊕=⊕=⊕  

MV.2 )}.(),({min][)( BVAVBABAV ≥∇=∇  
 
For, we consider the following cases: 
 
1. A and B are full matrices which are invertible over 

a division ring. If is nonfull, then the claim is 
clear, so let is full. If 

BA∇
BA∇ ,][][ BA ≤  then =][A min 

 and we must show that )}(),({ BVAV ][][ ABA ≥∇  or 
equivalently  or equivalently. Σ∈⊕∇ −1)( ABA

.)()( 11 Σ∈⊕∇⊕ −− ABAA  (**) 

(Note that ,][][ BA ≤  implies so by (*) 

Properties of the relation (**) is true.) 

,1 Σ∈⊕ −AB

Σ
 
2. One of the two matrices, say B, is non-full but A is 

full, so  is non-full and hence is in  so (**) 
is true. 

1−⊕ AB ,Σ

 
3. Both matrices are non-full. Since D is a division 

ring, is also non-full, hence the claim is true 
obviously. 

BA∇

 
MV.3 This condition is true by definition of S given 

in (I). 
MV.4 .]1[)1( OLLV ==⊕=  
MV.5 If A is non-full, then ∞=)(AV  by  

definition.   
 
(VII). Clearly we have VΣ=Σ . 
 
Now, following the terminology of [1], we define: 
 
Definition. For any ring R if a set  has the 

first five conditions in (*), we call it a Matrix Pseudo 
Ring (briefly MPR). Reasonably any matrix pseudo ring 
with the sixth condition in (*) could be called a Matrix 
Valuation Pseudo Ring (MVPR). 

)(RM⊂Σ

To sum up, we have proved that: 
 
Proposition 1. There is a 1-1 correspondence 

between matrix valuations and MVPRs on a division 
ring D. 

 
Note: In the above proposition, to obtain a matrix 

valuation, it would be possible first to restrict Σ  to D 
which is a non-invariant valuation ring on D, and then 
extend its corresponding valuation to a matrix valuation 
on D by Theorem 1 of [7]. But by this method we do not 
get necessarily the same matrix valuation corresponding 
to Σ . Furthermore, the following proposition can not be 
drawn by this method. 

Now let R be a ring embeddable in a division ring D. 
If Σ is an MVPR on R, we can consider M(R) as a 
subset of M(D). Then by the same process as steps (I)-
(VI) and by the restriction of Dieudonne’ determinant to 
GL(R), we obtain its corresponding matrix valuation V 
on R. Consequently we have: 

 
Proposition 2. There is a 1-1 correspondence 

between matrix valuations and pseudo matrix valuation 
rings on any ring embeddable in a division ring. 

The following theorem states a generalization of the 
above propositions. 

 
Theorem 1. There is a 1-1 correspondence between 

matrix valuations and MVPRs on any ring. 
 
Proof. Let R be any ring and  be its MVPR, which 

is a proper subset of M(R). contains all of the non-full 
matrices, hence it contains the least matrix ideal 
containing non-full matrices. In other words, this matrix 
ideal is a proper matrix ideal. Hence, the result follows 
by Proposition 2 and Theorem 7.4.8 of [1]. Noting (VII) 
above, the other side is clear.  

Σ
Σ

2. An Alternative Proof for the Extension Theorem of 
Matrix Valuation. 

In this section we give an alternative proof for the 
extension theorem of matrix valuations, based on 
Malcolmson’s method of localization. 

 
Theorem 2. Let R be a ring, then each matrix 

valuation V on R determines an associated epic R-field 
K with a valuation v; and conversely, every epic R-field 
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K with a valuation on it, arises from a matrix valuation 
on R. This correspondence between matrix valuations 
on R and valuated epic R-fields is bijective. 

 
Proof. Let K be an epic R-field and v a valuation on 

it. We can form the associated matrix valuation V on R, 
simply by defining V(A) = v(DetAf

 ), for all 
and , for all ; 

where f: R  K is the canonical epimorphism, Af is the 
image of A by f and “Det” denotes the Dieudonne’ 
determinant, as in [7]. Conversely, let V be a matrix 
valuation on R, then the set is a prime 
matrix ideal on R, so there is an associated epic R-field 

[see 1, p. 404]. We directly extend V to a valuation 
v on  based on Malcolmson construction for  
Define v:  by 

)(RGLA∈ ∞=)(AV )(\)( RGLRMA∈
→

)(1 ∞=℘ −V

,℘K
,℘K .℘K

},{∞Γ→℘ UK

).(
0

)\/( aV
xa

f
Vxafv −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

Then v is a Krull valuation on .  In what follows, 
we check the three necessary properties. First the 
multiplicative property. 

℘K

 
(i) Multiplicative property of “v”: 

).\/()\/(
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Also 
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/)10(()\/( 1 xafv
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(ii) The function “v” is well defined: 
First, note that (f/a\x) = (g/b\y) is equivalent to 

(f/a\x)(g/b\y)-1 = (1/1\1). Therefore, it is sufficient to 
prove that v(f/a\x) = 0, for (f/a\x) = (1/1\1). By definition 

it means that (f,a,x) ~ (1,1,1), thus  

This by MV.3 and MV.7 implies that the matrix 

 belongs to 

.
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we have , therefore by 

MV.6 
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Otherwise a ℘∈ , which is a contradiction. 
 

(iii) Additive property of “v”: 
First, note that if  then ,0)\/( ≥xafv
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This by MV.2 implies that 
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which admits the claim. Now, let  
then 
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and this completes the proof.  
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