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Abstract 

In many real systems in which a state variable should be controlled for being in 
appropriate range, the length of control (review) intervals is taken to be constant. 
In such systems, when the cost of reviews and out-of-range values of the state 
variable are considerable, this method may not be optimal. In this paper we let the 
length of review intervals to be variable during each operating cycle and construct 
the related mathematical cost model. Then two scheduled review methods, called 
U2 and U3, are introduced and the relative annual system costs are analyzed. The 
model is developed for the case of negative exponential variate as the time 
between successive consumption points. It is shown that the new methods results 
a significant reduction in the expected annual cost of the system. 
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1. Introduction 

In many real systems there exist critical state 
variables whose values must be kept within a predefined 
range. If they cross the range boundaries, a cost will be 
incurred. The nature of the state variables in such 
systems is stochastic so that it is not known (or 
computable) when it will reach its boundaries. Usually, 
in order to control a state variable in such system, the 
values of the variable are reviewed either continuously 
or periodically. Certainly, when reviews incur cost and 
take time they have to be performed discontinuously. 

At a review time, if it is observed that the variable 
has crossed the borders, proper action is taken to adjust 
the value of the variable. Production and inventory 
systems, security systems inspection, soil moisture in 
agricultural activities and some of medical systems are 
well known examples of such systems. 

A system whose annual cost model is considered in 
this paper consists of a state variable V, which, due to 
stochastic consumption, is always decreasing (except 
when its value is adjusted). It is assumed that the upper 
and lower boundaries are positive real number ω  and ν, 
respectively. When, by a review, the value of V is 
observed to be equal to or less than ν it is increased up 
to the level ω. The review and increment cost is fixed at 
A. In some systems, such as inventory systems, negative 
net values of V cause both constant and time dependent 
costs. 

This kind of cost is called shortage or backlog cost. 
We assume that each negative unit of V during a time of 
length t incurs π + π̂ t unit of cost. Of course holding 
positive values for V adds up to the system’s cost. 
Assume this cost is h for a positive unit of V for one 
unit of time. 

It is obvious that the purpose of making a review is 
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to check whether V has reached or crossed ν. If it has 
not, the review would not have any effect except its 
cost. In most of the so far proposed review methods the 
inter-review times (periods) are taken to be equal and 
constant, see for example [1-3]. In order to decrease the 
overall shortage cost, Teunter et al. [6] suggested 
emergency reviews in addition to the regular reviews. In 
fact, the decreasing nature of V implies that the 
subsequent review intervals need not to be of the same 
length as the preceding ones. Salehi Fathabadi [4] 
introduced an inventory control policy in which the 
lengths of review periods are computed as a function of 
inventory level. Within this policy the total annual 
system cost will considerably decrease when shortage 
costs are high. 

In this paper, first we construct a general annual cost 
model for variable review intervals. Three reviewing 
methods are described and applied to the general model. 
Then methods’ efficiency, when the time length 
between consumption points is negative exponential, are 
compared. 

Through the paper we assume that the consumption 
time is stochastic and occurs in single unit; the intervals 
between successive consumption events are independent 
and identically distributed. 

2. The General Cost Model 

Let Xt be the consumption on V during a time 
interval of length t with probability function p(x, t) and 
mean µt, where µ is the expected consuming rate. Let 
the time origin be defined as the instant of increasing 
the state variable up to ω. Also suppose Ur, r = 1, 2, 3,… 
are the review times measured from the time origin and 
U0 = 0. 

Now let Z be the time taken by the state variable to 
reach the level ν, starting from the time origin. If the 
p.d.f of Z is denoted by f (z) and its cumulative 
distribution function by F(z), then 
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and f (z) =d F (z)/dz, where m=ω−ν. 
Suppose the value of V is observed to be ν or less at 

a review time Ur, so that Ur−1<z≤Ur. The cycle length in 
this case is Ur. Therefore, if the number of reviews du-
ring a cycle is denoted by R, its expected value will be 
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At any time t during a cycle, 0 < t ≤ Ur, the expected 
net value of V is ω - µt and the expected shortage is 0 
for t ≤ z and 
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for t > z. Define V+ = Max. {V, 0} and V− = Max {−V, 
0}. Since V+ = V + V− the expected cost of holding 
positive V, subjects to Ur−1 < z ≤ Ur is 
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Assuming π + π̂ t as the cost of one unit of V− for a 
time interval of length t, the conditional expected cost of 
shortage in a cycle is 
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Therefore the expected total cost of operating the 
system per cycle. E[CR], is 
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where J is the cost of one review. We use E[CR]/E[UR] 
as a measure of the expected total annual cost. Let 
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be denoted by g (Ur, z) and {Ur}r = 0 by U. An easy 

 352 



J. Sci. I. R. Iran Salehi Fathabadi Vol. 15  No. 4  Autumn 2004 

simplification of (2.5) gives the expected annual cost of 
the system as: 
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In general case we assume the consumption 

distribution provides for existence of  and 

 where F’ (.) = 1 − F (.). It is easy to see that 
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According to the above assumption E[R] exists. 
Now consider that 
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where β = Ur − z. For non-increasing series of {Ur − 
Ur−1}r = 1, 
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only the first n terms of this summation are summed up, 
the error will be 
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Since F’ (Un) → 0 as n→∞ and (Un+1 − Un) ≤ U1, en 
tends to 0 as n→∞. Hence en can be made as small as 
desired. 

3. Review Methods 

In the classical treatment of the discrete review 
policy [2], as stated earlier, the length of all review 
intervals are taken as equal. In many cases such policy 
represents an easy schedule and implementation from a 
practical point of view. But the increasing hazard rate 
function, f (z)/[1−F(z)], of Z provides for succeeding 
review intervals shorter than the preceding ones. We 
consider two other simple methods for generating 
review times. In the first method the length of the first 
period is different from the later periods. In the second 
one the first two periods differ from the others. The 
classical review method is also included in the 
analyzing of the cost function and comparison. 

3.1. Periodic Review Method, U1 

In this method review times are generated as: 
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Let U1 denotes the set of times generated by this 
method. We have 
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since, the existence of  implies that n2F’ ( )
0
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(Un)→0 as n→∞. Hence E [UR] and E [UR
2] exist and 

the cost function can be calculated to any level of 
accuracy. 

3.2. One Period Scheduled Review Method, U2 

In this method, apart from the first review in a cycle, 
the reviews are periodic. Let the length of the first 
review period be denoted by T1 and the length of the 
subsequent periods be denoted by T. Thus review times, 
U2, are generated by: 
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This is convergent to a finite time length. Also it is 
easy to see that. 
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3.3. Two Periods Scheduled Review Method, U3 

In this method the first two review intervals are 
different in length from the subsequent intervals. The 
review times, U3, are scheduled as: 

1 1

1 2

,

( 2) , 2,3,4,r

U T

U T T r T r

=

= + + − = K
 (3.7) 

Obviously T1 ≥ T2 ≥ T and, within this method, {Ur − 
Ur−1} r−1 is also non-increasing. In this method, with a 
simple formulation we get 
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4. Negative Exponential Consumption Intervals 

We suppose that the intervals between successive 
occurrence of consumption have negative exponential 
density function. That is, 
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This shows that Z is a Gamma variate. 
Since, for this probability function, 
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for all the three methods,  and  

exist, and therefore the assumptions about these terms 
are valid. 
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4.1. Numerical Evaluation of Optimal Decision 
Variables 

For numerical determination of optimal decision 
variables, ν, ω, T1, T2 and T, either a numerical method 
capable of handling non-linear functions, mixed integer 
and real variables has to be exploited, or an iterative 
procedure is applied. To apply the latter approach an 
upper bound on m has to be established. 

First Euler-Maclaur summation formula, is used to 
find exact or nearly exact values of E[UR] and E[U2

R]  
for U1, U2 and U3 review times. The formula is 
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where Bk’s are Bernoulli numbers and Φ(j) (.) is the jth 
derivative of Φ(.) and Rk is the remainder which is 
smaller, in absolute value, than the first neglected term. 

Denoting (4.3) by fm (z), taking σ1 = T1 − T, σ2 = T2 + 
T1 − 2T and using (4.5) we get the following results for 
the three review methods: 
(i) – For U1 and m>3: 
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(iii) – For U3: 
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It should be reminded that the error in the use of (4.9) 
to (4.14) is very small for moderately large m. In order 
to get an upper bound for m, the value of 
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Theorem 1.  In the review methods U1, U2 and U3 
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and P (K, y) is the complementary cumulative 
distribution of poison variate. 

 
Proof.  The proof is for the three review method 
separately. First consider that by using 
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g (Ur, z) can be written as: 
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Using (4.5), for m>1 we get 
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Since fm (U n), fm (Un−1) and fm ((m − 1)/λ)  tends to 
zero as m→∞, the proof in this case is completed. 
(b)  Ur = T1 + (r − 1) T, r = 1, 2, 3…. In this case 
suppose m > λT1 + 1 and n satisfies T1 + (n − 2) T < (m 
− 1)/λ ≤ T1 + (n − 1) T. Then in a similar way we get 
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Applying Euler’s formula, we have 
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where α is defined as in case (a). Note that 
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and lim F’ (δ1) = 1  when m→∞. Canceling all terms 
inside the square brackets in (4.20) and (4.21), when 
m→∞, proves Theorem in this case. 
(c) U1 = T1, Ur = T1 + T2 + (r − 2)T, r = 1, 2, 3. In this 
case, by taking m >λ (T1 + T2) + 1 and n satisfying T1 + 
T2 + (n − 3) T < (m − 1)/λ ≤ T1 + T2 + (n − 2)T the 
proof is similar to case (b). 

To establish the upper bound on m, first consider the 
U1 method. Let for a precision factor, ε, M1 be such an 
integer that if m > M1 then the absolute difference 

between 
1

0
1

( ) ( )
r

r

u

m
r u

g f z dzβ
−

∞

=
∑ ∫  and G (T)/T is less than 

ε. Let M = Max. {3, M1}. For m > M the cost function 
can, with the accuracy level ε, be written as 
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λAK ν ω U J ω
m λT

m m λ Th
m λT

λG T
T m λT

= + +
+

− −
+

+

+
+

T h

 (4.23) 

By taking m as a continuous variable and solving 
∂K/∂m =0, we have 

1
2

0 2
1 [2 ( ( )) /( ) /12

/ 2] 1/ 2

m λ AT G T hT λ T

λT λT

= + −

+ −

2

1 +

 (4.24) 

Now an upper bound on m can be taken as: 
0

1 1( ) Max.{3, ,[ ] 1}m T M m=  (4.25) 

in which [x] is the greatest integer less than or equal to 
x. 

In the case of U2 and U3, let M2 and M3 be the 
counterparts of M1 with the corresponding T. 
Considering (4.9) to (4.11) in case of U2, it is not 
difficult to see that if m > M2 then 

1[ ] [ ] / /RE R E U T δ T= −  (4.26) 

[ ] / / 2RE U m λ T= +  (4.27) 

and 
2 2[ ] ( 1) / / /RE U m m λ mT λ T= + + + 2 3  (4.28) 

Also using (4.12)-(4.14), we see that if m > M3 then 
E[R], E [UR] and E [UR

2] for U3 have the same values as 
(4.26)-(4.28) respectively with δ1 substituted by δ2. 
Finally the annual cost function in case of U2 and U3 
methods becomes 

3 2 2

1

2( , , ) /
2

/ 3
2

2 [ ( ) ]
(2 )

i

i

λAK ν ω U J ω
m λT

m mλ Th
m λT

λ G T Jδ
T m λT

−

= + +
+

−
+

+

−
+

+

T h

 (4.29) 

Taking the same approach as in the case of U1 
method, the upper bound for m in U2 method will be 

0
2 1 2 2( , ) Max.{ ,[ ] 1}m T T M m= +  (4.30) 

where 

1
2

0
2

2 2

[2 ( ( ) )/( )

/12 / 2] 1/ 2 .

m 1λ AT G T Jδ hT

λ T λT λT

= + −

− + −
 (4.31) 

In the case of U3, m0
3 is the same as (4.31) with δ1 

replaced by δ2 and the upper bound on m is 

0
2 1 2 3 3( , , ) Max.{ ,[ ] 1}m T T T M m= +  (4.32) 

4.2. Model Optimization 

As it is seen, minimization of the annual cost 
function is very complicated. It is a mixed integer and 
real optimization problem for which no known method 
exists. Therefore a heuristic method has to be applied. 

Being able to determine an upper bound for m we 
suggest the following iterative search procedure to 
evaluate the optimal values of the related decision 
variables. 

1. Guess values for T, T1, and T2 as appropriate. 
2. Guess ν. 
3. Evaluate m1 (T), m2 (T1, T) or m3 (T1, T2, T) as 

appropriate. 
4. Find ω0 in the interval (ν, mi + ν) which gives the 

lowest cost function value. 
5. Fixing ω to ω0 find ν0 which gives the lowest cost 

function value. 
6. If ν0 is different from ν, set ν = ν0 and start from 

step 3. 
7. Using ω0 and ν0, find the related optimal value of 

T, T1, and T2 as appropriate. 
8. If the predefined accuracy level on interval lengths 

has been reached stop otherwise start from step 3. 
In general for given values of ν and ω, the annual 

cost function has several minima in terms of the review 
intervals. This creates the possibility that a normal 
search procedure terminates with a local solution. 
Figures 1, 2 and 3 illustrate this point. 

Further numerical investigations suggest that K is 
unimodal with respect to T in both U2 and U3 when T1 
(and T2) are fixed. Furthermore when T is set to its 
optimal value, then K is unimodal with respect to T1 in 
both of the methods (see Figs. 4 and 5). 

The above remarks suggest that if steps 7 and 8 in the 
search procedure are replaced by the following steps 
then the results are very likely to be global. Given an 
initial value of T1 (E[z] for example): 

1.  Minimize K with respect to T. Denote the best 
value found for T as T0. 

2.  Set T = T0 and search for the best value of T1 and 
denote it by T1, 0. 

3.  Use T1, 0 as the initial value of T1 and start from 
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step 1. 
The optimal values of T1 and T are found when two 

consecutive values of T or T1 are equal. 
In the investigation on review periods, it has been 

observed that T1 is the most effective period in U2 and 
U3. For example, in case U2, T1 causes a significant 
variation in K (T1) when T is optimal. In contrast, for 
optimal T1, K (T) is rather a flat function. Tables 1 and 
2 demonstrate the effect of the first review periods on 
the annual cost function in the cases of U2 and U3. 
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Figure 1.  Total cost of U1 method. 
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Figure 3.  Total cost of U3 method. 
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Figure 5.  Total cost of U3 for optimal T2 and T3. 
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Figure 2.  Total cost of U2 method. 
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Figure 4.  Total cost of U2 method for optimal T. 
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Table 1.  Total cost of U2 for different review periods 

T = 0.54  T1 = 1.69 

T1 K (T1) Increase  T K (T) Increase 

1.0 126.2 30.1  0.1 97.05 0.04 

1.2 112.7 16.1  0.2 97.03 0.01 

1.4 102.0 5.2  0.3 97.02 0.00 

1.6 97.4 0.4  0.4 97.01 0.00 

1.69* 97.0 0  0.54* 97.01 0 

1.7 97.0 0.0  0.7 97.01 0.00 

1.9 98.9 1.9  0.9 97.01 0.00 

2.1 103.3 6.4  1.1 97.02 0.01 

2.3 109.6 12.9  1.3 97.03 0.02 

Table 2.  Total cost of U3 for different review periods 

T = 0.62, T = 0.55  T2 = 1.69, T = 0.55 T2 = 1.69, T2 = 1.69, T1 = 0.62 
T2 K (T2 ) Increase  T1 K (T1) Increase T K (T) Increase 
1.0 124.4 28.2  0.3 97.02 0.01 0.2 97.01 0.00 
1.2 112.3 15.7  0.4 97.01 0.00 0.3 97.01 0.00 
1.4 102.0 5.1  0.5 97.01 0.00 0.4 97.01 0.00 
1.6 97.4 0.4  0.6 97.01 0.00 0.5 97.01 0.00 

1.69* 97.0 0  0.62* 97.01 0′ 0.55* 97.01 0 
1.7 97.0 0.0  0.7 97.01 0.00 0.7 97.01 0.00 
1.9 98.8 1.8  0.8 97.01 0.00 0.8 97.01 0.00 
2.1 103.2 6.4  .0.9 97.01 0.00 0.9 97.01 0.00 
2.3 109.3 12.6  1.0 97.02 0.01 1.0 97.01 0.00 

 
 

Table 3.  Minimum total annual cost of U1 (top entry) and U2 

πλ 8 10 20 30 40 100 
 29.7 33.7 50.4 64.0 76.1 132.2 
1 29.7 33.7 50.4 64.0 76.1 132.1 
 45.3 50.9 73.1 89.8 104.3 166.7 
9 44.5 50.1 71.9 88.4 102.9 162.8 
 54.3 64.0 89.5 108.7 124.0 197.2 
99 58.8 60.5 83.4 100.7 115.3 182.0 
 

 
Table 4.  Minimum total annual cost for U1 (top entry) and U2 

πλ 8 10 20 40 100 
 29.7 33.7 50.4 76.1 132.2 
1.5 29.7 33.7 50.4 76.1 132.1 
 40.5 44.9 62.9 89.0 141.9 
10 39.5 44.2 62.2 88.4 141.6 
 50.9 55.3 75.8 103.3 161.4 
100 48.9 53.2 73.5 101.1 157.5 
 

 
Table 5.  Minimum total annual cost of U2 (top entry) and U3 

πλ 8 10 30 100 
 44.5 50.1 88.4 162.8 
9 44.4 50.1 88.4 161.7 
 54.8 60.5 100.7 182.0 

99 54.7 60.5 100.7 181.8 

 

5. Comparison of the Review Methods 

Considering the three review methods, the minimum 
total annual cost is used for comparing their performa-
nce. Table 3 compares U1 with U2 for different values 
of λ and π. In this comparison ν and ω have been set to 
their optimal values. We see that there is no practical 
difference for small π (relative to h) and low value of λ. 
For large π and λ, U2 is a more desirable method. 

Table 4 also compares U1 with U2 for different 
values of π and λ. Here we observe that the difference is 
not much, even for large values of ˆπ and λ. 

Table 5 demonstrates that the extra complication of 
U3 does not yield considerable improvement with 
respect to U2. 

6. Conclusion 

Generally, in a consideration of different review 
times, the periodic review method should be compared 
with U2. There is no great practical and computational 
difficulty imposed by using the first review period 
different from the subsequent ones, but there is a possi-
bility of a significant reduction in the total annual cost. 
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