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Abstract 

It is shown that a commutative reduced ring R is a Baer ring if and only if it is 
a CS-ring; if and only if every dense subset of Spec (R) containing Max (R) is an 
extremally disconnected space; if and only if every non-zero ideal of R is essential 
in a principal ideal generated by an idempotent. 
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1. Introduction 

Al-Ezeh [1], Azarpanah and Karamzadeh [4] have 
given some algebraic characterizations for extermally 
disconnected spaces. In particular, they have proved 
independently that C(X) is a Baer ring if and only if X is 
and extremally disconnected space. In this paper we 
generalize this theorem for reduced rings and we give 
several equivalent conditions for reduced Baer rings. 
Throughout, R is a commutative ring with identity. We 
say that R is a reduced ring if R has no non-zero 
nilpotent elements. Also R is called a Baer ring if the 
annihilator of each ideal I in R, Ann(I), is generated by 
an idempotent. If I and J are ideals in R, we say I is 
essential in J if  and every non-zero ideal inside J 
intersects I non-trivially, and when we say I is essential 
we mean it is essential in R. An ideal I in R is called a 
closed ideal if it is not essential in a larger ideal, and a 
ring R is said to be a CS-ring if every closed ideal is a 
direct summand [7]. It is trivial to see that if I is an ideal 
in a reduced ring R, then I 

JI ⊆

⊕ AnnR (I) is an essential 
ideal in R and therefore I is an essential ideal if and only 
if AnnR(I)=(0). 

We denote Spec (R) and Max (R) for the spaces of 
prime ideals and maximal ideals, respectively. For any 

 and any ideal I of R, we set Ra∈

{ }PaRSpecPaV ∈∈= :)()(  

and 

{ }PIRSpecPaVIV Ia ⊆∈== ∈ :)()()( I . 

Then )()()()( IJVJIVJVIV =∩=∪ , for all ideals 
I and J of R. Also for any family { }  of ideals we 

have: 
KkkI ∈

∑ ∈∈ = )()( kKkkKk IVIVI . From this it follows 
that F={V(I): I is an ideal of R} is closed under finite 
union and arbitrary intersections, so that there is a 
topology on spec (R) for which F is the family of closed 
sets. This is called the Zariski topology [6]. If Spec 
(R), we put 

⊆S
SaVaVs ∩= )()( , SIVIVS ∩= )()( . We 

consider S as a subspace of Spec (R). 
Throughout, X will denote a completely regular 

Hausdorff space and C(X) denotes the ring of 
continuous real-valued functions on X. A space X is 
said to be extremally disconnected if every closed set 
has a closed interior or equivalently, every open set has 
an open closure [5]. 

2. Baer Rings 

Throughout this section S is a dense subspace of 
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Spec (R), i.e., . The operators cl and int denote 
the closure and the interior in S. We first need the 
following lemmas: 

)0(=∩S

 
Lemma 2.1.  Let R be a reduced ring, S be a dense 
subset of Spec (R) and a, b∈R. Then int int 

 if and only if Ann(a) ⊆  Ann(b). 
⊆)(aVS

)(bVS

 
Proof.  Let int int and c∈Ann(a), then 
ac=0 implies that 

⊆)(aVS )(bVS

)()(int)(int)( bVbVaVcVS SSSS ⊆⊆⊆− . 

This means that bc=0 and therefore c∈Ann(b). 
Conversely, let Ann(a) Ann(b). Let P∈ int VS(a) and 
P∉VS(b) and get a contradiction. Now 

⊆
−∉ SP int 

VS(a) implies that there is  with S- int 
VS(a) VS(c) and . Clearly ac=0 and bc≠ 0. Then 

Ann(a) and Ann(b) which is a contradiction. □ 

Rc∈≠0
⊆ Pc∉

∈c ∉c
We know that a subset A of the space X is clopen 

(closed and open) if and only if there 
exists such that f = 0 on A and f = 1 on X-A 
[5]. We also need the following lemma.  

)(XCf ∈

 
Lemma 2.2.  Let R be a reduced ring and Max . 
Then A is a clopen subset of S if and only if there exists 
an idempotent  such that A=VS(e). 

SR ⊆)(

Re∈
 
Proof.  Suppose that A is a clopen subset of S, AI ∩=  
and , then A=clA= =Vs(I) and 
Ac=VS(J) and 

cAJ ∩= )( AVS ∩
φ=∩ )()( JVIV SS . Hence I+J=R, so 

there exist  and  such that . On the 
other hand,  implies that 

Ie∈ Je ∈′ 1=′+ ee
SeVeV SS =′∪ )()( 0=′ee , 

. Consequently, A=VS(I)=VS(e). The 
converse is trivial. 

eeei =2 .,.

The structure of essential ideals of C(X), have been 
studied before [2,3] and a topological characterization 
of essential ideals of C(X) was given. In the following 
lemma we characterize the essential ideals of reduced 
ring R via a topological property. 
 
Lemma 2.3.  let R be a reduced ring, I be a non-zero 
ideal of R and let S be a dense subset of Spec (R). Then 
I is an essential ideal in R if and only if int VS(I)=φ . 
 
Proof.  Suppose the interior of VS(I) is not empty and 
denoted by U=intVS(I). Let UP∈ . Since S-U is closed, 
there exist . Thus for every PPa USP −′∈ −∈′I Ib∈ , 
ab=0, i.e., Ann(I) (0), a contradiction. ≠

Conversely, let K be a non-zero ideal in R and 

Kb∈≠0 , then S-VS(b) is open set and clearly 
φ≠−∩− ))(())(( IVSbVS SS , so there is Ia∈  such 

that φ≠−∩− ))(())(( aVSbVS SS , hence SabVS ≠)( , 
i.e., IKab ∩∈≠0 . □ 

Now we give the main result of this paper. 
 

Theorem 2.4.  Let R be a reduced ring and let Max 
 be dense subset of Spec(R). The following 

statements are equivalent. 
SR ⊆)(

(1) S is extremally disconnected. 
(2) R is a Baer ring. 
(3) Every non-zero ideal in R is essential in a 

principle ideal generated by an idempotent. 
(4) R is a CS-ring. 

 
Proof.  (1) (2) Let T be any subset of R, we are to 
show that Ann(T)=(e), where e=e2. put F= . 

According to (1), F is a clopen subset of S. If F=

⇒
)(int aVS

Ta∈
I

φ , we 
put I=(T) and we have . 

Hence 

)()()( aVaVIV STaS
Ia

S ∈
∈

== II

φ=∩= )(int aVF S , which means that I is an 
essential ideal in R, by Lemma 2.3. Thus 
Ann(T)=Ann(I)=(0) and we are through. Hence we may 
assume that F=φ . According to Lemma 2.2, there exists 
an idempotent Re∈  with F=VS(e) and S-F=VS(1-e). 
We claim that Ann(T)=(1-e). To see this, let ∈b Ann(t), 
then 0=ab , Ta∈∀  implies that , )()( aVbVS SS ⊆−

Ta∈∀ . Thus )()(int)( eVFaVbVS SSTaS ==⊆− ∈I . 
This means that 0 .,.),()()( ==∪= beeibeVeVbVS SSS  
and therefore )1( eb −∈ . Conversely, we note that 

TaeVeVFaV SSS ∈∀==⊇ ),(int)()(int  

and therefore by Lemma 2.1., )()( eAnnaAnn ⊇  
)1( e−= , Ta∈∀ . This shows that )1()( eTAnn −⊇  

and we are through. 
(2)⇒ (3) Let I be an ideal of R, then by (2), we have 

Ann(I) (e) =Ann(1-e), where e=e2. So I is essential in 
(1-e). 

(3)⇒ (4) Let I be a closed ideal, then by (3), I is 
essential in (e), for some idempotent . But since I 
is closed we must have I=(e). 

Re∈

(4)⇒ (1) We note that (4) immediately implies (2), 
for if T is a subset of R, then the ideal I=Ann (T) is a 
closed ideal in R. To see this, we let I be essential in a 
larger ideal J, then )0(≠TJ  implies that s. But R is 
reduced ring and hence , which is 
impossible. This shows that I=Ann(T) is a closed ideal 
and by (4), I is generated by an idempotent. Now we 

)0(=ITJ I
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assume (2) and show that for any closed set F, the 
interior of F is closed (note, we assume that int φ≠F ). 
Since F is closed, then , where T is some 
index set. Hence by (2), we have 

)(aVF STa∈I

)1()()( eaAnnTAnn
Ta

−==
∈
I , 

where e=e2. We claim that int F=VS(e), to see this let 
, then there exists  with 

 and . Now we have 
F int∈P Rb∈

)( int bVFS S⊆− Pb∉

)( int)( aVFbVSP S
Ta

S
∈

⊆⊆−∈ I . 

Hence , )()( aVbVS SS ⊆− Ta∈∀ . Therefore ab=0, 
, which means that Ta∈∀ )1()( eTAnnb −=∈ . Thus 

 implies that  and therefore 
. Now suppose that 

, there exists  such that 
 and . 

)(bVP S∉ )1( −∉ eVP S

)( int .,.),( eVFeieVP SS ⊆∈
)(eVP S∈ Rb∈

)()( bVeVS SS ⊆− )(bVP S∉
Then be=0 implies that  

. Thus ab=0,  and therefore 
 which means that 

)1( eb −∈ )(TAnn=
)(aAnnTa∈= I Ta∈∀

)()( aVbVS STaS ∈⊆− I ∈P  
. This 

proves our claim and we are through. □ 
F int)( .,.),( int,)( Ta ⊆⊆− ∈ eVeiaVbVS SSS I

The following result is well-known, see Theorem 
3.6. in [4]. 
 
Corollary 2.5.  The following statements are 
equivalent. 

(1) X is extremally disconnected. 
(2) C (X) is a Baer ring. 
(3) Every non-zero ideal in C(X) is seeential in a 

principle ideal generated by an idempotent. 
(4) C(X) is a CS-ring. 

 
Proof.  It is well-Known that Max XXC β≅))(( , where 

Xβ  is the stone-Cech compactification of X [5]. We 
note that X is extremally disconnected if and only if 

Xβ  is extremally disconnected. Hence the corollary 
follows from Theorem 2.4, by letting S=Max (C(X)). □ 

For a ring R, let B(R) be the set of idempotents of R. 
It is well-known that B(R) can be made a Boolean 
algebra. Also it should be recalled that B(R) is complete 
if every subset has either infimum or supremum. 
 
Proposition 2.6.  Let R be a reduced ring and Max 

. Then B(R) is complete if and only if the union 
of any collection of clopen subsets of S is clopen. 

SR ⊆)(

 
Proof.  Suppose the union of any collection of clopen 
subsets if S is clopen. Let  be any 
subset of B(R). By Lemma 2.2., VS(ek) is clopen, 

}:{ KkeB k ∈=

Ka∈∀ . Hence )( kSKk eVA ∈= U  is clopen, so there 
exists Re∈  such that A=VS(e). Obviously e is the 
infimum of B. Conversely, let  be any 
collection of clopen sets. Then by Lemma 2.2., there 
exist the idempotent elements  such that 

}:{ KkAk ∈

Rek ∈
)( kSk eVA = . Let }:{ Kkefine k ∈= . We have 

kKkS AeV ∈= U)( . Therefore  is clopen. □ kKk A∈U

References 
1. Al-Ezeh H., Natsheh M.A., and Hussein. Some properties 

of the ring of continuous functions. Arch. Math., 51: 60-
64 (1988). 

2. Azarpanah F. Essential ideals in C(X), period. Math. 
Hungar., 32(2): 105-112 (1995). 

3. Azarpanah F. Intersection of essential ideals in C(X). 
Proc. Amer. Math. Soc., 125(7): 2149-2154 (1997). 

4. Azarpanah F. and Karamzadeh O.A.S. Algebraic 
characterization of some disconnected spaces. Italian J. 
Pure. Appl. Math., 25: 317-327 (1999). 

5. Gillman L. and Jerison M. Rings of Continuous 
Functions. Springer-Verlag (1976). 

6. Matsumura H. Commutative Ring Theory. Cambridge 
University Press (1986). 

7. Smith P.F. and Tercan A. Generalizations of CS-modules. 
Comm. Algebra, 21: 1809-1847 (1993). 

 349  


	1. Introduction
	2. Baer Rings
	References

