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Abstract 

A theory is presented for the dispersion relations of the nonlinear phonon-
polaritons arising when phonons are coupled to the electromagnetic waves in 
multilayered structures of nonlinear materials. The calculations are applied to a 
multilayered structure consisting of a thin film surrounded by semi-infinite 
bounding media where each layer may have a frequency dependent dielectric 
function and Kerr-type nonlinearity. At least one of the media is an ionic crystal 
supporting optical phonon modes. The resulting analytic and numerical solutions 
for the dispersion relations of phonon-polaritons with s-polarization are 
considered for several cases. We find that the presence of nonlinearities leads to 
multiple branches in the dispersion relation. The results are plotted as frequency 
versus wave vector and frequency versus nonlinearity for different phonon-
polariton modes. The parameters that modify the modes correspond to the in-
plane wave vector, the thickness of the film, the phonon frequencies and the 
nonlinearity of each layer. 
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1. Introduction 

We present an analytic formulation for a specific 
type of collective excitations (optical phonons) that can 
propagate in a multilayer system composed of layer of 
different materials and are coupled to electromagnetic 
waves (EMW). It is known from studies of other 
geometries and materials that the characteristics of 
surface and interfaces give rise to localized and guided 
excitations [1-3]. The mixed modes constructed by 
coupling EMW and collective excitations, which are 

known generally as polaritons, have been studied over 
many years. For the case of coupling to the crystal 
vibrations that occurs in metals or semiconductors the 
resulting modes are called phonon-polaritons. These 
modes have both photon and optical phonon 
characteristics, depending on the wave vector and the 
properties of the multilayered system. 

On the other hand, the properties of guided and/or 
surface EMW in optical structures that exhibit nonlinear 
effects of the Kerr-type have been the subject of both 
theoretical and experimental interest [4,5]. Now, with 
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the inclusion of a characteristic frequency dependence 
(corresponding to crystal excitations) in the nonlinear 
dielectric function we may extend this work to nonlinear 
polaritons due to coupling of EMW to crystal 
excitations. In a recent work we studied the propagation 
of nonlinear plasmon-polariton modes [6] in a three-
layered structure with planar interfaces, including the 
nonlinear dielectric constants, which was generally 
frequency dependent. In this present paper we consider 
the propagation of nonlinear phonon-polaritons, which 
presents another interesting case with distinctive 
properties. Specifically we investigate the TE (or s-
polarized) surface phonon-polariton modes supported 
by a three-layered system (a thin film bounded 
symmetrically by semi-infinite bounding media) of the 
type often investigated experimentally (see, e.g., Ref. 
7). The dielectric functions of both materials are 
generally taken to be both frequency dependent and 
nonlinear (with a Kerr-type nonlinearity). The linear 
term in the dielectric function depends on the frequency 
in a way that represents an optical phonon in a metal or 
a doped semiconductor. The nonlinearity constant can, 
in general, be either positive or negative. For the 
positive case (or so-called self-focusing case) we 
consider the propagation of phonon-polariton modes in 
the general structure where either one or both of the 
constituent media are nonlinear. 

This paper is outlined as follows. In section 2 we 
outline the theoretical procedure briefly, because the 
method is broadly similar to that of the plasmon-
polariton case in Ref. 6. The important difference, 
however, is that in the phonon-polariton case there are 
additional frequency bands (compared with the 
plasmon-polariton case) in which the nonlinear 
polaritons may propagate. This is a consequence of the 
fact that, in a bulk linear medium, the phonon-polariton 
dispersion curve has two branches, whereas the 
plasmon-polariton curve consists of only one branch 
(see e.g. Ref. 6). This provides a motivation for 
extending our previous work on nonlinear plasmon-
polaritons to the phonon case. In addition the frequency 
ranges can be different in the two cases, which may be 
important for practical applications. In section 3 we 
consider a special case corresponding to a nonlinear 
layer bounded by a medium with a linear frequency 
dependent dielectric function. We next present the 
general case in which both media are nonlinear and have 
frequency dependent dielectric functions in section 4. 
The calculations for the limiting case of a linear 
frequency dependent film bounded by nonlinear 
frequency dependent media are obtained as a special 
case when the nonlinearity of the film tends to zero. 
Numerical examples are given throughout the paper. 

Finally section 5 is devoted to conclusions, including 
the possibility of extending this method to other 
geometries and other type of dielectric media. 

2. Theoretical Model 

The EMW are assumed to be TE (or s-polarized) 
modes. We take the interfaces to be in the yx −  plane 
and choose the x-axis to represent the propagation 
direction of the coupled modes parallel to the interfaces. 
For phonons (in the absence of damping) we consider 
the dielectric function in layer j to have the form 

( ) ( ) 2
0 Ejjj αωεωε +=  (1) 

where the nonlinearity coefficient jα  in each layer is 

assumed to be a positive constant and the linear term is 
given by the standard expression [1,9,10] 
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The frequency jlω  (  where T stands for 

transverse optical phonons and L for longitudinal optical 
phonons) denotes the phonon frequency and index 

LTl ,=

3,2,1=j  (with 2 labeling the film, while the bounding 
materials 1 and 3 are the same for a symmetric 
structure). 

We now briefly outline the basic theory for nonlinear 
polaritons in a multilayered structure; details are to be 
found in Refs. 5 and 6. In a nonmagnetic medium, 
substituting the form of electric and magnetic fields for 
TE modes into Maxwell equations, we obtain a 
nonlinear wave equation for the electric field E 

( )[ ]tkxiEx ω−= exp)0,,0( , where k is the in-plane wave 
vector and ω  is the frequency. From this, we deduce 
the first integration of the differential equation for  

in the form 
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where  is the constant of integration and the 

coordinate z (measured perpendicular to the layers) lies 
within the layer j. The function g is a quadratic function 
of the electric field amplitude, and it also contains the 
nonlinearity coefficient (see, e.g., Ref. 6). It is given by 

jC

[ ] 42

2
1)/()( jjjoj EEckg αωωε +−=  The dispersion 

relations for the phonon-polariton modes can be 
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obtained by rewriting Equation (3) as an expression for 
 and then integrating it with respect to z. 

Following the procedure of Ref. 6 different cases may 
arise for the electric amplitude depending on the sign 
and magnitude of the constant , leading to various 
possible types of Jacobian elliptic integrals [8]. The 
continuity of  at the film boundaries necessitates 
a careful determination of the sign of the integral 
expression for . Due to the multivalued nature of 

 as a function of E it is convenient to sketch the 
phase trajectory graph for the mode under consideration 
before integrating Equation (3), as discussed in Ref. 6. 
For the case of nonlinear film (with ) the phase 
trajectory is a closed loop and the solution 

zE ∂∂ /

2C

zE ∂∂ /

zE ∂∂ /
zE ∂∂ /

02 >α
( )zE  is a 

periodic function. Then the integration is performed 
segment by segment starting from the boundary of the 
film (layer ). Since the integrand is an even function of 
amplitude  the integral is simplified. 

2
jE

3. Nonlinear Film Bounded by Linear Media 

In this special case the three-layer structure consists 
of a nonlinear dielectric film of thickness d, chosen to 
occupy the region 2/dz ≤  and characterized by . 
The two linear semi-infinite media on each side are 
characterized by a frequency dependent dielectric 
function  in the region 

2ε

( )ωε01 2/dz > . 
For the nonlinear film, using Equation (3) and 

introducing a dimensionless variable 1/ EEE =  where 

 is the value of E at the interface 1E dz
2
1

−=  (see Ref. 

6), we get 
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which for the linear (bounding) media we may write 
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Here ωπλ /2 c=  represents the vacuum wavelength. 
A necessary condition  for decaying 
waves in the bounding layer as 

01
222 / εω >kc

∞→z  is implied from 
Equation (6). For convenience we shall assume at this 
stage that  and  in order to study the 
guided and surface waves in the film, depending on the 

value of 

0102 εε > 02 >α

ω . By analogy with Ref. 6 this is a sufficient 
condition for , which simplifies the analysis. The 
phonon-polariton dispersion relation can then be 
obtained by integrating the expressions for  from 
Equations. (4) and (5), taking care to deal correctly 
which the signs (as mentioned earlier) and applying the 

usual electromagnetic boundary conditions at 

02 >C

zE ∂∂ /

dz
2
1

±= . 

The result leads to the following equation (by analogy 
with Ref. 6) for the phonon-polariton dispersion relation 

.b cn 01
2

=−⎟
⎠
⎞

⎜
⎝
⎛ − mJKqd  (6) 

where ( )mcnK 01−≡  is one quarter at the period of the 

elliptic function cn ( )mx  and the integer J takes the four 
values  for a complete description of the 
solutions. The argument m determines the shape, the 
period and the elliptic function of interest, the parameter 
q is a frequency dependent, effective wave number in 
the z direction, and b is an amplitude factor for the cn 
function. The quantities m, q and b depend on the 
parameters of the layered structure, and are defined by 
analogy with Refs. 5 and 6. We solve Equation (6) 
numerically to obtain the behavior of the nonlinear 
phonon-polariton modes in the geometry under 
consideration. 

3,2,1,0

We express the above results in a convenient form 
for the numerical calculations by introducing a reduced 
frequency  and a reduced wave vector 

. We may also define the ratio 
, which typically lies between 1 and 2 

for alkali halides (see, e.g., Ref. 8). It is convenient to 
employ a characteristic length parameter (define in 
terms of the bounding medium) given by , 
and we have made numerical calculations for values of 
the film thickness corresponding to  and 

T1/ωω=Ω

Tck 1/ωκ =
1/ 110 >=Ω TL ωω

Tcd 10 /2 ωπ=

0dd =

02
1 dd = . For example, in the case of NaBr, we have 

 Hz and , implying that 
 μm. For NaCl the corresponding values are 

 Hz, , and  μm. 
The condition mentioned earlier for bounded solutions 
as 

12
1 104.02/ ×≈πω T 56.10 ≈Ω

750 =d
12

1 109.42/ ×≈πω T 61.10 ≈Ω 600 ≈d

±∞→z  is just , which implies that the 
physical solutions are restricted to the two regions of 

01
22 / εκ >Ω

Ω  
characterized by  and  with 10 cΩ<Ω< 21 cΩ<Ω<
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Other conditions may add further constraint on the 
range of Ω , e.g. the assumption of  and  
which ensures that . By re-expressing Equation 
(6) in terms of the dimensionless quantities defined 
above, we have studied the nonlinear phonon-polariton 
dispersion relations. 

12 εε > 02 >p
02 >C

As a numerical example we first choose NaCl to be 
the bounding medium (with , 

 Hz,  Hz) and 
the film to be a medium whose dielectric function has 
negligible frequency dependence in this range of 
frequencies, e.g., Si where we take . The 
physical solutions are then constrained to lie within the 
ranges shown shaded in Figure 1 which corresponds to 
satisfying the necessary conditions  and 

. In Figure 2a we have plotted the 
reduced frequency  versus wave vector 

25.21 =∞ε
12

1 109.42/ ×=πω T
12

1 109.72/ ×=πω L

7.11)0(02 =ε

)()0( 102 ωεε >

)(/ 01
22 ωεκ >Ω

Ω κ  in taking 

parameters 02
1 dd = ,  and . Also, 

the solutions for Ω  versus 

05.02 =p 3,2,1,0=J

2p  with a fixed wave-
vector value 5.0=κ  are demonstrated in Figure 2b. For 
each value of J a sequence of curves representing the 
solutions associated with phonon-polariton modes are 
obtained which are related to the periodicity of cn ( )mx  
function. In order to illustrate the effect of the film 
thickness on the nonlinear phonon-polaritons, we show 
in Figures 3a and 3b the corresponding calculations for 

 versus Ω κ  and Ω  versus 2p , respectively, with 
 and other parameters as before. The ranges of 

 are the same as before, but there are now more 
branches to the spectra, corresponding to the larger 
value of d. 

0dd =
Ω

Next it is assumed that  (the linear part of 
dielectric function of the film) may also be frequency 
dependent. In this more general case we express 

02ε

( )ωε1  
and  in terms of the dimensionless quantities 
introduced earlier, and also define the ratios 

 and . Depending on the 
values of parameters t and s (in particular, whether they 
are greater or less than 1) different cases may arise. For 

example, in the case where GaSb is the film material 
and InAs is the bounding medium we have 

( )ωε02

LLs 12 /ωω= TTt 12 /ωω=

95.0=t , 
98.0=s , ,  and . In 

general, the physical modes correspond to those bands 
where 

09.10 =Ω 3.121 =∞ε 4.142 =∞ε

Ω  lies within the intervals defined by 

),min(0 11 dc ΩΩ<Ω<  and 

              (8) ),min()1,max( 22 dct ΩΩ<Ω<

where the characteristic frequencies are defined as 
follows (generalizing Equation 7): 
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In Figures 4a and 4b the curves for Ω  versus κ  and 
Ω  versus 2p , respectively, has been plotted for the 
assumed InAs/GaSb/InAs three-layer structure in the 
case of . 0dd =

 

 

Figure 1.  Plots of 01ε , 02ε  and  versus  for the 
special case where 

2)/( Ωκ Ω

02ε  is independent of . The shaded 
regions represent the bands of Ω  where the phonon-polariton 
modes may exist. The parameters are for a three-layer 
structure such as NaCl/Si/NaCl (see the text) and 

Ω

5.0=κ . 

 174  



J. Sci. I. R. Iran Baher and Cottam Vol. 15  No. 2  Spring 2004 

 
 

 

Figure 2.  Dispersion relation curves, (a) Ω  versus κ  for 
constant  and (b)  versus 2p Ω 2p  for constant κ . The 

parameters are for a NaCl/Si/NaCl structure with 02
dd =

1  

(see the text). 

 
From this section we conclude that the resulting 

dispersion relations show features that are different 
from those of nonlinear plasmon-polariton modes (e.g. 
there are typically two bands of frequencies) and are 
distinctive of the phonon frequencies. With other 
choices of materials for the phonon case (e.g., such that 

) the behavior of the phonon-polariton bands 
would be different. There is a variety of possible forms 
for the spectra, sensitively depending on the choice of 
materials. This topic would be attractive for 
experimental studies. 

∞∞ < 12 εε

4. Nonlinear Film Bounded by Nonlinear Media 
In this general case we allow both the film and 

bounding medium to have nonlinear, frequency-

dependent dielectric functions, while restricting the 
calculations to self-focusing media (i.e. both  and  
are positive). Without loss of generality, the functions 

 and  may again be calculated by a 
procedure similar to that of Ref. 6. Different possible 
types of phase trajectories in the intermediate nonlinear 
layer may occur where the boundary conditions for the 
electric field amplitude lead to physical solutions for the 
phonon-polariton modes. In a similar way to the 
previous case of plasmon-polaritons, the dispersion 
relation is considered in the film while the properties of 
the symmetric bounding medium enter the result 
through the value of the integration constant . Here 
we generalize section 3 further by distinguishing two 
different cases, namely  and , depending 
on the frequency and the parameters of the materials. 

1α 2α

)( 31 gg = 2g

2C

02 >C 02 <C

 
 
 

 
 

 

Figure 3.  The same as for Figure 2, but for larger film 
thickness with 0dd = . 
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If we apply the first case, , then the restricted 
regions for the physical solutions would be those where 
the reduced frequency  is confined to have the values 
given formally as in Equation 8, but with the four 
characteristics frequencies now re-defined as 

02 >C
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where we denote . The formalism as 
described earlier for the special case of a nonlinear film 
bounded by a linear medium carries over to the case of a 
nonlinear bounding medium with the exception that the 
definition of the effective wave vector q (along with the 
other quantities b and m in Equation 6) must be 
generalized. The dispersion relations for the symmetric 
and antisymmetric modes can be derived following the 
same procedure as developed in section 3 (see also Ref. 
6). We additionally have modes that are analogous to 
those found in section 3, but which have modified 
properties. Therefore, the electric field amplitude is 
obtained by integrating Equation (3) following the path 
of the phase trajectory under consideration. This again 
leads to the generalization of all possible symmetric and 
antisymmetric phonon-polariton modes and the full set 
of dispersion relation is given by the same expression as 
in Ref. 6, but with new parameters appropriate to the 
phonon case. In Figure 5 the dispersion curve, 

21 / ppr =

Ω  
versus κ , has been plotted for InSb representing the 
bounding medium and GaSb denoting the film, taking 

 and  (implying ), where 
the dielectric functions of both media are nonlinear and 
frequency dependent. In this particular case we have 
solved for Ω  subject to the conditions that 

,   and 

. 

05.02 =p 025.01 =p 5.0=r

11
2 ) +ω()/( p>Ω εκ ),()( 12 ωεωε > 12 pp >

)()/( 2
2 ωεκ >Ω

We may next comment briefly on the other case, 
namely when . Following the phase trajectory 
scheme to determine the field amplitude in the layer we 
obtain the periodic solution expressible in terms of the 
elliptic function dn

02 <C

( )mx  which is an even function of x. 

The dispersion relations can be derived in a similar way 
as discussed in the previous case and the results are 
formally the same as Ref. 6. Examples of dispersion 
curves for this general case have the same features as 
those in section 3. 

Finally we note that the special case in which the 
film can be characterized by a linear dielectric function 
(which also may be frequency dependent) while the 
bounding media is characterized by a nonlinear 
frequency dependent dielectric function of the Kerr-type 
can readily be obtained from the results of this section 
by formally applying the limit  (with ) to 
the previous expressions. In the analogous case of 
plasmon-polariton modes a detailed discussion can be 
found in Ref. 6. 

02 →p 01 ≠p

 
 

 
 

 

Figure 4.  Dispersion relation curves, (a)  versus Ω κ  for 

0dd =  constant  and (b)  versus 2p Ω 2p  for constant κ . 
The parameters are for a InAs/GaSb/InAs structure with 

02
dd =

1  (see the text). 
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Figure 5.  Dispersion relation curve,  versus Ω κ , for the 
general case where each layer of the three-layer system, 
InAs/GaSb/InAs, are both frequency dependent and have 

Kerr-type nonlinearity for 02
dd =

1

)

 (see the text). 

 

6. Conclusions 

The propagation of the phonon-polariton modes has 
been investigated for a three layered structure where the 
layers generally may have a Kerr-type nonlinearity 
characterized by  for the bounding medium and 

 for the bounded slab (film). The calculations for 
dispersion relations of the frequency versus wave vector 
and frequency versus nonlinearity have been carried out 
for different cases. First, a special case (a film with 
Kerr-type nonlinearity bounded by a linear medium) 
was considered. The electric field amplitude 

( 31 εε =

2ε

( )zE  was 
calculated using a phase trajectory scheme leading to 
Jacobian elliptic integrals. The dispersion curves show a 
sequence of branches labeled by J, in accordance with 
the periodicity of cn ( )mx  function, for each value of 
film thickness d. The nonlinear phonon-polariton modes 
were found to have distinct branches characteristic of 
the optical phonons and showing features that are 
different from those of plasmon-polaritons [6]. Another 
special case which is a linear film bounded on each side 

by a nonlinear medium, was also considered. In 
illustrating the dispersion curves we also made 
applications of the most general structure where both 
media have Kerr-type nonlinearity. 

For the most interesting situation in which both 
media are nonlinear we distinguished two different 
cases with respect to the integration constant , 
namely  or . The numerical calculations 
show how the nonlinearity of the bounding media 
affects the resulting dispersion relations leading to new 
modes. This theory may also be extended to apply to the 
superlattice case in which two different materials (at 
least one being nonlinear and at least one having a 
frequency dependent dielectric function) could be 
considered as the constituent layers stacked 
periodically. 

2C
02 >C 02 <C
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