On C₀-Group of Linear Operators

M. Hassani^{*} and A. Niknam

Department of Mathematics, Islamic Azad University of Mashhad, Mashhad, Islamic Republic of Iran

Abstract

In this paper we consider C_0 -group of unitary operators on a Hilbert C^* -module *E*. In particular we show that if $A \subseteq L(E)$ be a C^* -algebra including K(E) and α_t a C_0 -group of *-automorphisms on *A*, such that there is $x \in E$ with $\langle x, x \rangle = 1$ and $\alpha_t (\theta_{x,x}) = \theta_{x,x} \ t \in R$, then there is a C_0 -group u_t of unitaries in L(E) such that $\alpha_t(a) = u_t \ a \ u_t^*$.

Keywords: C₀-group of linear operators; Hilbert C*-module; Unitary operator

1 Introduction

A one parameter family T=T(t), $t \in R$ of bounded operators on Banach space $X(T:R \rightarrow B(X))$ is called a one parameter group if it satisfies:

i) *T*(0)=*l*

ii) $T(s+t)=T(s)T(t) t, s \in R$. Moreover if

iii) For each $x \in X$ the map $t \to T(t)x$ from R to X is continuous with respect to norm topologoy of X, then T(t) is called C_0 -group.

We define the infinitesimal generator of one parameter group T(t) by

$$\delta x = \lim_{t \to 0} t^{-1} [T(t)x - x].$$

Where the domain $D(\delta)$ of δ is the set of all $x \in X$ such that the limit exists. See [3] Let A be a *-algebra. An automorphism on A is an invertible linear operator α : $A \rightarrow A$ such that $\alpha(ab) = \alpha(a)\alpha(b)$ and $\alpha(a^*) = (\alpha(a))^*$. An automorphism α on the algebra A called an inner automorphism if there is a unitary element $u \in A$ such that $\alpha(a) = uau^*$ for every $a \in A$. Suppose A is a C^* -algebra. Let E be a complex linear space which is a left

A-module and $\lambda(ax) = (\lambda a)x = a(\lambda x)$ where $\lambda \in C$, $a \in A$ and $x \in E$. The space *E* is called a pre-Hilbert *A*-module if there exists an (*A*-valued) inner product <, $\geq: E \times E \rightarrow A$ such that for every $x, y \in E$, $\lambda \in C$ and $a \in A$, we have:

$$\begin{array}{l} (i) < x \,, x \ge 0 \\ (ii) < x \,, x \ge 0 & \text{if f } x = 0 \\ (iii) < x \,, x \ge 0 & \text{if f } x = 0 \\ (iii) < x \,+ \lambda y, z \ge < x \,, z \ge + \lambda < y \,, z \ge \\ (iv) < x \,, y \ge < y \,, x \ge * \\ (v) < ax \,, y \ge = a < x \,, y \ge \end{array}$$

A pre-Hilbert *A*-module *E* is called a Hilbert *A*-module or Hilbert *C**-module over *A*, if it is complete with respect to the norm $||x|| = || < x, x > ||^{\frac{1}{2}}$. For example if *A* is a C*-algebra, then *A* with its product as the usual action is left *A*-module. In addition if *A* equipped with the inner product $< a, b > = a b^*$ then it is a Hilbert *A*-module.

Suppose that *E*, *F* are Hilbert *C**-modules. We define L(E,F) to be the set of all maps *t*: $E \rightarrow F$ for which there is a map t^* : $F \rightarrow E$ such that $\langle tx, y \rangle = \langle x, t^*y \rangle$ ($x \in E, y \in F$). It is easy to see that *t* must be *A* -linear and bounded. We call L(E,F) the set of adjointable maps

AMS Subject Classification (2000): 47D03, 46C99

^{*} E-mail: hassani@mshdiau.ac.ir

from *E* to *F*. Thus every element of L(E,F) is a bounded *A*-linear map. In particular, L(E,F) which we abbreviate to L(E) is a *-algebra. Let *E*, *F* be Hilbert *C**-modules. For *x* in *E* and *y* in *F*, define $\theta_{x,y}: F \rightarrow E$ by $\theta_{x,y}(z) = \langle z, y \rangle \langle z \in F \rangle$. It is easy to check that $\theta_{x,y} \in L(E,F)$ with $(\theta_{x,y})^* = \theta_{y,x}$ and also that the following relations hold: (where *G* is Hilbert *C**-module)

$$t \ \theta_{x,y} = \theta_{tx,y} \qquad (t \in L(E,G))$$

$$\theta_{x,y} s = \theta_{x,s^*y}$$
 $(s \in L(G,F)).$

We denote by K(F,E) the closed linear subspace of L(F,E) spanned by $\{\theta_{x,y} \ x \in E, \ y \in F\}$ and we write K(E) for K(E,E). We also have lx = x if A has an identity I and also $\overline{K(E)E} = E$ (See [1]). An operator $u \in L(E,F)$ is said to be unitary if $u^*u = I_E$ and $uu^* = I_F$. In this paper we consider Hilbert A-module E over unital C^* -algebra A. (See [1]-[3] for more result on Hilbert C^* -module and semi-group of linear operators).

2. The Main Results

Theorem 1. Let $u_t = u(t)$ be a C_0 -group of unitary operators on a Hilbert C^* -module E. Then $\alpha_t(a) = u_t a$ $u_t^*(a \in K(E))$ is a C_0 -group of automorphism on K(E).

Proof. It is easy to see that α_t is an automorphism and we have:

$$\begin{aligned} \alpha_t \left(\theta_{x,y} \right) - \theta_{x,y} &= u_t \left(\theta_{x,y} \right) u_t^* - \theta_{x,y} \\ &= \theta_{u_t x, u_t y} - \theta_{x, u_t y} + \theta_{x, u_t y} - \theta_{x,y} \\ &= \left(\theta_{u_t x - x, u_t y} \right) + \left(\theta_{x, u_t y - y} \right). \end{aligned}$$

So we have:

$$\begin{aligned} &\|\alpha_t \left(\theta_{x,y}\right) - \theta_{x,y} \| \le \|\theta_{u_t x - x, u_t y}\| + \|\theta_{x, u_t y - y}\| \\ &\le \|u_t x - x\| \|u_t y\| + \|x\| \|u_t y - y\| \\ &= \|u_t x - x\| \|y\| + \|x\| \|u_t y - y\|. \end{aligned}$$

Since u_t is continuos then

$$\lim_{t \to 0} \left\| \alpha_t \left(\theta_{x,y} \right) - \theta_{x,y} \right\| = 0.$$

Which shows that $\alpha_t(\theta_{x,y})$ is continuous. Since $\{\theta_{x,y}: x, y \in E\}$ is dense in K(E), thus $\alpha(a)$ is continuous for each $a \in K(E)$. This shows that α_t is a C_0 -group of *-automorphisms. \Box

Theorem 2. Let *A* be a *C**-algebra and *K*(*E*) $\subseteq A \subseteq L(E)$ and α_t a *C*₀-group of *-automorphisms on *A* such that there is $x \in E$ with $\langle x, x \rangle = l$ and $\alpha_t(\theta_{xx}) = l$

 $\theta_{x,x}$ $t \in R$, then there is a C_0 -group u_t of unitaries in L(E) such that $\alpha_t(a) = u_t a u_t^*$.

Proof. For each $a \in A$ we define $u_t(ax) = \alpha_t(a)x$. We have:

$$\|ax\| = \| < x, x > ax\|$$
$$= \|a(\theta_{x,x})x\| \le \|a\theta_{x,x}\| \|x\| = \|a\theta_{x,x}\|$$

So $||ax|| \leq ||a\theta_{x,x}||$.

But

$$\|a\theta_{x,x}\| = \|\theta_{ax,x}\| \le \|ax\| \|x\| = \|ax\|.$$

So we have

$$\left\|a\theta_{x,x}\right\| = \left\|ax\right\| = \left\|a\left(\theta_{x,x}\right)x\right\|.$$

Similarly

$$\left\|\alpha_{t}(a)\theta_{x,x}\right\| = \left\|\alpha_{t}(a)\left(\theta_{x,x}\right)x\right\|.$$

Then

$$\begin{aligned} \|ax\| &= \|a(\theta_{x,x})x\| = \|a\theta_{x,x}\| = \|\alpha_t(a\theta_{x,x})\| \\ &= \|\alpha_t(a)\alpha_t(\theta_{x,x})\| = \|\alpha_t(a)\theta_{x,x}\| = \|\alpha_t(a)\theta_{x,x}x\| \\ &= \|\alpha_t(a)x\| = \|u_t(ax)\|. \end{aligned}$$

So u_t is well defined isometry on Ax. Since A includes K(E) for every $z \in E$ we have $\theta_{z,x} \in K(E)$ hence $\theta_{z,x} \in Ax$. But $\theta_{z,x}(x) = \langle x, x \rangle z = z$. So $z \in Ax$ and since $\overline{K(E)E} = E$ hence $\overline{[Ax]} = E$. Thus u_t can be extended to a unitary on E.

$$u_t^*(ax) = u_t^{-1}(ax) = \alpha_t^{-1}(a)x$$

To justify group properties of u_t consider $u_0(ax) = \alpha_0(a)x = x$ and

$$<\mathbf{u}_{s} \ \mathbf{u}_{t} \ (\mathbf{ax}), \ \mathbf{bx} > = <\mathbf{u}_{t} \ (\mathbf{ax}), \ \mathbf{u}_{-s} \ (\mathbf{bx}) >$$
$$= <\alpha_{t}(a)x, \ \alpha_{-s}(b)x > = <\alpha_{-s}(b^{*}) \ \alpha_{t} \ (a)x, \ x >$$
$$= <\alpha_{-s}(b^{*} \ \alpha_{t+s}) \ (a) \ x, \ x > = < u_{-s}(b^{*} \ \alpha_{t+s}(a)x), \ x >$$
$$= =
$$\alpha_{s}(\theta_{x,x}) \ x >$$$$

 $= < b^* a_{t+s}(a) x, x > = < a_{t+s}(a) x, bx > = < u_{t+s}(a)x, bx > .$

for each $a, b \in A$. Since [Ax] = E, then $u_{t+s} = u_t u_s$. Strong continuity of u_t follows by:

$$\|u_t(ax) - ax\| = \|(\alpha_t(a) - a)x\| \le \|\alpha_t(a) - a\|\|x\|$$

Therefore u_t is a C_0 -group of unitaries on E. Finally for each $a, b \in A$

$$u_t a u_t^* (bx) = u_t a \alpha_t^{-1} (b) x$$
$$= \alpha_t (a \alpha_t^{-1} (b)) x$$
$$= \alpha_t (a) (bx)$$

It follows from the density of [Ax] in *E* that $\alpha_t(a) = u_t a u_t^*$. \Box

Theorem 3. Let $A \subseteq L(E)$ be a *C**-algebra including K(E) and there is $x \in E$ with $\langle x, x \rangle = 1$ and α be an automorphism on *A* such that $\alpha(\theta_{x,x}) = \theta_{y,y}$ where $\langle y, y \rangle = 1$.

Then there is a unitary operator u in L(E) such that $\alpha(a) = uau^*, (a \in A)$.

Proof. Define for each $a \in A$, $u(ax) = \alpha(a)y$. The proof of Theorem 2 we have:

$$\|u(ax)\| = \|\alpha(a)y\| = \|\alpha(a)\theta_{y,y}y\| = \|\alpha(a)\theta_{y,y}\|$$
$$= \|\alpha(a)\alpha(\theta_{x,x})\| = \|\alpha(a\theta_{x,x})\| \|a\theta_{x,x}\| = \|ax\|.$$

So *u* is well-defined isometry on *Ax*. Since $A \subseteq K(E)$, $\overline{[Ax]} = E$. So *u* is an invertible isometry on *E* with inverse $u^{-1}(ay) = \alpha^{-1}(a)x$. Hence *u* is a unitary operator. Now

$$uau^{*}(by) = ua\alpha^{-1}(b)x$$
$$= \alpha (a\alpha^{-1}(b))y$$
$$= \alpha (a)(by) \qquad (b \in A)$$

which implies that $uau^* = \alpha(a)$ on Ay. The density of $\overline{[Ay]}$ in E completes the proof. \Box

References

- 1. Lance E.C. Hilbert *C**-module, LMS Lecture Note Series 210, Cambridge University Press (1995).
- Niknam A. On one-parameter automorphism groups of K(H). Proc. of Ninth Iranian Math. Conf., 9: 266-275 (1978).
- 3. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).