Vol.4 No.3 Summer 1993

J. Sci. I. R. Iran

A COMMUTATIVITY CONDITION FOR RINGS

A.H. Yamini

Amir Kabir University, Hafez Ave., Tehran, Islamic Republic of Iran

Abstract

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all $x, y \in C$ R either [x,y] = 0 or $x - x^n [x,y] \in C$ for some non negative integer n = n(x,y) depending on x and y. Then R is commutative.

Introduction

Throughout this paper, *R* represents an associative ring with center C, and J(R) denotes the Jacobson radical of R. As usual for $x, y \in R$ the commutator xy-yx is denoted by [x,y].

The Jacobson structure theory is one of the most useful in proving that appropriately conditioned rings are commutative or anticommutative [1,3]. Using this theory, Herstein [1] proved the following theorem:

Let R be a ring with center C such that for a fixed integer n > l, $x - x^n \in C$ for all $x \in R$ then R is commutative. This is one of the finest results in ring theory.

The objective of this paper is to prove an analog to the above-mentioned result. Indeed, we prove the following:

Theorem 1.1. Let R be a ring with center C such that for a fixed integer n > 1 either $x - x^n [x, y] \in C$, or [x,y] = 0 for all $x,y \in R$. Then R is commutative.

Materials and Methods

Preliminary Lemmas

that

$$0 \neq x^{n} [[x,y], x] = [x^{n} [x,y], x] = -[x - x^{n} [x,y], x],$$

that is $x - x^n [x, y] \notin C$; contrary to the hypothesis. Since R, as a division ring, has no nonzero nil ideal; we can, at this point, conclude that R is commutative by Herstein [2]. But we will finish the proof of this Lemma as follows: Let $x, y \in R$, by (1) we have:

$$x^{2}y[x,y] = x(xy)[x,y] = x[x,y]xy$$
 (2)

But x[x,y] = -x[y,x] = -(xyx-x2y) = -[xy,x], thus by (2),

$$x^{2}y[x,y] = -[xy,x]xy$$
 (3)

By (1), we know that xy commutes with [xy,x], therefore (3) implies that

$$x^{2}y[x,y] = -xy[xy,x]$$
 (4)

Since [xy,x] = x[y,x] = -x[x,y], hence (4) yields that

We first establish the following Lemmas for a ring R satisfying the hypothesis of Theorem 1.1.

Lemma 2.1. If R is a division ring it is commutative.

Proof. First note that,

[x,y] commutes with both x and y, for all $x,y \in R$. (1) If not, for some $x, y \in R$, $[[x,y], y] \neq 0$, hence $x \neq 0, y \neq 0$ 0 and $[x,y] \neq 0$. Being in a division ring we deduce

Keywords: Associative ring; Structure theory; Commutativity and anticommutativity of rings

 $x^2 y [x,y] = x y x [x,y]$

that is (x^2y-xyx) [x,y]=0, or $x[x,y]^2=0$. At any rate, since R is a division ring we must have [x,y]=0. Thus *R* is commutative.

Lemma 2.2. If R is semisimple it is commutative.

Proof. As is well-known, R is a subdirect sum of rings R_i , which are primitive. As a homomorphic image of R, each R_i satisfies the hypothesis placed on R. Thus, to show that R is commutative, it suffices to

226

J. Sci. I. R. Iran

Yamini

Vol.4 No.3 Summer 1993

prove that each R_i is commutative, in other words we may assume that R is primitive. As a primitive ring, either $R \approx D$ for some division ring D, or for some k > I D_k is a homomorphic image of a subring of R. We wish to show that this latter possibility does not arise. If it did, then D_k , the complete matrix ring over D, satisfies the hypothesis placed on R. This is cleary false for the elements

$$\mathbf{x} = \begin{bmatrix} 1 & 1 \dots & 0 \\ 0 & 0 \dots & 0 \\ 0 & 0 \dots & 0 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 0 & 1 \dots & 0 \\ 0 & 0 \dots & 0 \\ 0 & 0 \dots & 0 \end{bmatrix}$$

in D_k satisfy $x^2 = x$, $[x,y] = y \neq 0$, and $x - x^n [x,y] \notin C$ for all positive integers *n*. Thus, *R* must be a division ring, hence it is commutative by Lemma 2.1. In this way, *R* is seen as a subdirect sum of commutative rings and so both x and y.

Proof. Since [x,y] = -[y,x], it suffices to show that

$$[[x,y],x] = 0$$
 for all x,y in R. (2.5)

To prove (2.5), let $x,y \in R$ and set a = [x,y].

Obviously if [a,x]=0 we would be done. Therefore, by the hypothesis placed on R, we may assume that

$$a - a^n [a, x] \in C. \tag{2.6}$$

By the Corollary above $a, [a,x] \in J(R)$; hence

$$a - a^n [a, x] \in C \cap J(R). \tag{2.7}$$

In view of Lemma 2.3 (ii), (2.7) yields that

$$(a - a^n [a, x]) [x, y] = 0.$$
 (2.8)

it must be commutative.

For general R satisfying the hypothesis of Theorem 1.1, since R/J(R) is semisimple, we have

Corollary. For all $x, y \in R$, $[x, y] \in J(R)$.

Lemma 2.3. (i) If $z \in C$ and $x \in R$, then $(z^{n+1}-z) x \in C$. (ii) If $z \in C \cap J(R)$, then z[x,y]=0 for all $x,y \in R$.

Proof (i). If $zx \in C$, there is nothing to prove. Suppose that $[zx,y] \neq 0$ for some $y \in R$, then from $z \in C$ we deduce that $[x,y]\neq 0$; and by the hypothesis we have

$$(zx) - (zx)^n [zx,y] \in C \text{ and } x - x^n [x,y] \in C.$$
 (2.1)

Having $z \in C$, (2.1) implies that

$$(zx) - (z^{n+1} x^n) [x,y] \in C \text{ and } (z^{n+1} x) - (z^{n+1} x^n) [x,y]$$

 $\in C,$ (2.2)

hence $(z^{n+1}-z) x \in C$.

Proof (ii). Let $z \in C \cap J(R)$ and let $x, y \in R$. By part

Since a = [x,y], from (2.8) we get $a^2 = a^n [a,x]a$. (2.9)

Having a^{n-2} [a,x]a (= [a,x]a, if n=2) in J(R), (2.9)implies that $a^2=0$. Hence $a \in C$, by (2.6). This proves (2.5) and completes the proof of this Lemma. With the above Lemmas established we are able to

complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let $x,y \in R$. If [x,y]=0 we are done. Therefore, it is enough to show that $x-x^n$ $[x,y] \in C$ also implies that [x,y]=0. But having $x-x^n$ $[x,y] \in C$ we get

$$[x - x^{n}[x, y], y] = 0. (2.10)$$

Since by Lemma 2.4 [x,y] commutes with both x and y, (2.10) yields that

$$[x,y] = [x^{n}[x,y],y] = [x,y] [x^{n},y].$$
(2.11)

But by the Corollary $[x^n, y] \in J(R)$, hence $[x^n, y]$ is a quasi-regular element in R. Therefore, from (2.11) we deduce that [x, y]=0. Theorem 1.1 is now proved.

 $[(z^{n+1}-z)x,y] = 0.$

Since $z \in C$, (2.3) yields that

 $z^{n+1}[x,y] = z[x,y].$ (2.4)

On the other hand, from $z \in J(R)$, we get $z^n \in J(R)$. Hence, z^n is a quasi-regular element in R. Therefore, from (2.4) we deduce that z[x,y] = 0.

Lemma 2.4. For all $x, y \in R$, [x, y] commutes with

Results and Discussion

Remark 3.1. Suppose that for all x,y in R either [x,y]=0 or $x-[x,y] \in C$ then R is commutative. Because if $[x,y] \neq 0$ for some $x,y \in R$ we have $x-[x,y] \in C$ and $y-[y,x] \in C$. This would place x+y in C, hence 0=[x+y,y]=[x,y] contrary to $[x,y] \neq 0$.

Remark 3.2. Let *m* be a fixed positive integer such that for all *x*,*y* in *R* either [x,y]=0 or $x-x^m[x,y]\in C$. Suppose that $[x,y] \neq 0$ for some *x*,*y* in *R*, then $x-x^m[x,y] \in C$ and $x \notin C$, hence $x[x,y] \neq 0$ i.e. $[x,xy] \neq 0$. From $[x,xy] \neq 0$ we get $x-x^m[x,xy] \in C$, i.e. $x-x^{m+1}$

227

(2.3)

 $[x,y] \in C$. Continuing in this way it can be shown that

if $[x,y] \neq 0$ then $x - x^n [x,y] \in C$ for all integers $n \ge m$. Since in any stage of the proof of Theorem 1.1 we just deal with a finite number of elements of R, then in view of the above remarks from Theorem 1.1 we get

Theorem 3.1. Let R be a ring with center C such that for all $x,y \in R$ either [x,y]=0 or $x-x^n[x,y] \in C$ for some non negative integers n=n(x,y) depending on x and y (for n=0, $x^n [x,y]=[x,y]$). Then R is commutative.

Remark 3.3. If we replace the hypothesis of Theorem 3.1 by

" $x - x^n [x, y] \in C$, for all x, y in R". Then the theorem would be trivial; because for each x in R from $x - x^n [x, x] \in C$ we get $x \in C$.

References

- 1. Herstein, I.N. Noncommutative Rings. Carus Mathematical Monographs. No. 15, Mathematical Association of America, Washington D.C., (1968).
- 2. Herstein, I.N. On Rings with a Particular Variable Identity. J. Algebra, 62, 346-357, (1980).
- 3. MacHale, D. An Anticommutativity Consequence of a Ring Commutativity Theorem of Herstein. *The American Mathematical Monthly*, 94, 162-165, (1987).

