THE LEFT REGULAR REPRESENTATION OF A COMMUTATIVE SEPARATIVE SEMIGROUP

B. Tabatabaie Shourijeh

Department of Mathematics, University of Shiraz, Shiraz, Islamic Republic of Iran

Abstract

In this paper, a commutative semigroup will be written as a disjoint union of its cancellative subsemigroups. Based on this fact we will define the left regular representation of a commutative separative semigroup and show that this representation is faithful. Finally concrete examples of commutative separative semigroups, their decompositions and their left regular representations are given.

Introduction

A semigroup Σ is called separative if for every s, t in Σ

$$s^2 = st = t^2$$

implies s=t.

Throughout this paper, unless otherwise specified, Σ will denote a commutative separative semigroup (C.S.S.).

In this paper, we will define an equivalence relation on Σ and show that each equivalence class is a cancellative subsemigroup of Σ . By the decomposition of Σ under this equivalence relation we will define the left regular representation of Σ and it will be shown that this representation is faithful.

Results

1.1 **Definition.** For each s in Σ , the set $h_s = \{t \in \Sigma: t^n = \text{su and s}^m = \text{vt, for some u,v in } \Sigma \text{ and m,n in N} \}$ is called an *archimedean* component of Σ .

Now we state an important theorem on which this section is based. Note that other versions of this theorem can be seen in [1] and [2].

1.2 Theorem. (a) The relation

 $s \sim t$ if and only if $t \in h$,

is an equivalence relation on Σ [3, Proposition 4:3.3]; (b) If $s \in \Sigma$, then h_s is a subsemigroup of Σ [3, Proposition

Keywords: Semigroup; Left regular representation; Reduced-C* algebra; Partial isometry

4:3.41;

(c) If $s \in \Sigma$, then h_s is a cancellative subsemigroup of Σ [3, Theorem 4:3.5].

Note that by part (a) of the above theorem, for every Σ we can write

$$\Sigma = \frac{U}{s \in \Sigma} h_s.$$

Moreover, the cancellative property of each h_s is among the necessary tools in considering the properties of the left regular representation of Σ .

At this stage we proceed to introduce a candidate for the left regular representation of Σ.

Let $\{\delta_t \colon t \in \Sigma\}$ be the standard orthonormal basis for $\ell^2(\Sigma)$. To each $s \in \Sigma$, we associate the linear operator λ (s) on $\ell^2(\Sigma)$ such that

$$\lambda (s) \delta_t = \begin{cases} \delta_{st} & \text{if } st \in h_t \\ o & \text{otherwise} \end{cases} (\phi)$$

We consider the properties of λ in the following lemmas.

1.3 Lemma. If we correspond to each $s \in \Sigma$, the linear operator $\lambda(s)$ such that (ϕ) holds, then

$$\lambda$$
 (rs) = λ (r) λ (s)

for every r.s in Σ .

Proof. If $t \in \Sigma$, then

$$\lambda$$
 (rs) $\delta_{t} = \delta_{rst}$

if and only if $rst \in h_t$.

And.

$$\lambda$$
 (r) λ (s) $\delta_t = \lambda$ (r) $\delta_{st} = \delta_{rst}$

if and only if

$$st \in h_t$$
 and $rst \in h_{ct}$

Therefore in order to show that

$$\lambda$$
 (rs) = λ (r) λ (s)

it is enough to prove that,

rst $\in h_t$ if and only if st $\in h_t$ and rst $\in h_{\pi}$.

To see this, from st $\in h_t$ and rst $\in h_s$, we have

Now since \bullet is an equivalence relation on Σ we have t_{\bullet} rst, i.e. $rst \in h_{\bullet}$.

Conversiy let rst ∈ h,. Hence

$$(rst)^m = ut \text{ and } t^m = v(rst)$$

for some u,v in Σ and m,n in N. Since

$$t^{m} = v(rst) = (vr) (st)$$
 (1)

we have

$$(ts)^m = t^m s^m = s^m v(rst) = (s^{m+1} vr)t.$$
 (2)

From (1) and (2) we see that

$$st \in h_{t}$$

Now from $rst \in h_t$ and $st \in h_t$ it is easily seen that

$$rst \in h_{\pi}.///$$

The following lemma shows that each λ (s) is a partial isometry.

1.4 Lemma. For $s \in \Sigma$, the linear operator λ (s) which is defined in (ϕ) is a partial isometry.

Proof. Let $s \in \Sigma$ and

$$D_s = \{t \in \Sigma : st \in h_s\}.$$

We will prove that each λ (s) is a partial isometry with the initial space $\ell^2(D_s)$. It suffices to show that the map

$$t \rightarrow st$$

is injective on D.

L e t t_1 , $t_2 \in D_s$ and $st_1 = st_2$. Since $st_1 \in h_{t_1}$ and $st_2 \in h_{t_2}$, from

$$t_1 \sim st_1 = st_2 \sim t_2$$

we have $t_1 \in h_{t_1}$. Therefore $h_{t_1} = h_{t_2}$. Hence $st_1 = st_2 \in h_{t_1}$.

Since h_{t_1} is a cancellative semigroup from $st_1 = st_2$ we have $t_1 = t_2$. ///

Now we have the following definition.

1.5 **Definition.** Let Σ be a commutative separative semigroup. For each $s \in \Sigma$, the linear operator

 λ (s) on ℓ^2 (Σ) defined by,

$$\lambda \text{ (s) } \delta_t = \begin{cases} \delta_{\mathbf{g}} & \text{if } \mathbf{st} \in \mathbf{h}_t \\ \mathbf{O} & \text{Otherwise,} \end{cases}$$

is the left regular representation of Σ .

Before giving some examples, it should be noted that by [4], PI (H), the partial isometries on a Hilbert space H, from a semigroup.

1.6 Examples.

(a) Let Σ be the additive semigroup

$$Z^+ = \{0,1,2,3,...\}.$$

Obviously Z^+ is separative, $h_0 = \{0\}, h_1 = \{1, 2, 3, ...\}$ and

$$Z^+ = h_o \cup h_1$$
.

$$\lambda: \mathbb{Z}^+ \to \mathrm{PI} (\ell^2(\mathbb{Z}^+))$$
 by

$$\lambda (m) \delta_n = \begin{cases} \delta_{m+n} & \text{if } m+n \in h_n \\ o & \text{Otherwise} \end{cases}$$

is the left regular representation of Z^+ . It is easily seen that λ (o) = I, λ (1) is the unilateral shift operator, S, and

$$\lambda$$
 (m) = λ (1)^m = S^m.

(b) Let Σ be the additive semigroup $N^+ = \{1,2,3,...\}$. Obviously $h_1 = N$ and,

$$\lambda: N \to PI (\ell^2 (N))$$
 defined by $\lambda (m) \delta_n = \delta_{m+n}$

is the left regular representation of N^+ . Clearly λ (1) is a shift of multiplicity one and

$$\lambda$$
 (m) = λ (1)^m

is a shift of multiplicity m.

We close this section by proving that, the left regular representation of a commutative separative semigroup is faithful.

1.7 Theorem. If Σ is a commutative separative semigroup and λ its left regular representation, then λ is faithful.

Proof. Let s_1 , $s_2 \in \Sigma$ and λ (s_1) = λ (s_2). Since each λ (s) is a partial isometry with the initial space ℓ^2 (D_*) where

$$D_{\epsilon} = \{t \in \Sigma : st \in h_{\epsilon}\},\$$

from λ (s₁) = λ (s₂) we have D_{S.} = D_{S.}.

Since $s_1^2 \in h_{s_1}$ we see that

$$s_1 \in D_{S_1} = D_{S_2}.$$

From $s_1 \in D_{s_1}$ we have

$$s_2 s_1 \in h_{S_1}$$
.

Therefore

$$\lambda (s_1) \delta_{s_1} = \lambda (s_2) \delta_{s_1}$$

or,

$$s_1^2 = s_1 s_2$$
.

Since h_{S_1} is a cancellative semigroup and

$$s_1^2 = s_1 s_2 \in h_{S_1}$$

we have $s_1 = s_2$ i.e., λ is faithful. ///

G.K. Pedersen in [5, 7.2.1] defined the reduced C^* -algebra, C_r^* (G), of a group. Here in a similar way we can associate a C^* -algebra to a semigroup.

Conclusion

(a) For a given commutative separative semigroup Σ we can define its reduced C*-algebra, C_r^* (Σ) as follows:

$$C_{\tau}^{*}(\Sigma) = C^{*}(\{\lambda(s), \lambda(s)^{*}\}), s \in \Sigma.$$

where λ is the left regular representation of Σ .

(b) If D is a commutative cancellative semigroup, it

is obviously a separative semigroup, therefore we can consider its reduced C*-algebra, C_r^* (D).

References

- Clifford, A.H., and Preston, G.B. The algebraic theory of semigroups. Vol. I, Math. Surveys, No. 7, Amer. Math. Soc. Providence, R.I., (1961).
- Hewitt, E. and Zuckerman, H. The ℓ¹-algebra of a commutative semigroup, Trans. Amer. Math. Soc. 83 (1956), 70-97.
- 3. Dunkl, C.F. and Ramirez, D.E. Representations of commutative semitopological semigroups, Lecture Notes in Maths. Springer Verlag, Berlin (1975).
- 4. Wallen, L.J. Semigroups of partial isometries, J. Math. Mech. 19, (1969/70), 745-750.
- Pedersen, G.K. C*-algebras and their automorphism groups, London math. Soc. Monographs 14, Academic Press, London, New York (1979).