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Abstract
Consider y" (t) + A (t)y (t) + 0, y is a real n-dimensinal vector and A(t) is a real

nxn matrix, continuous on some interval. Some positivity properties of solutions
and conjugate points of y"(t) + A(t)y (t) = 0 appeared in literature. We prove similar

results for focal points.

Introduction

The differential equations to be considered in this
paper have the form

4)) X"H+AWDxW)=0
where x is a real n-dimensional vector, A (1) is a real
nxn matrix continuous on some interval.
Ahmad in [1] and Ahmad and Lazer in [2] have proved
some results for conjugate points relative to (1), as
where we prove the corresponding results for focal points
relative to (1).

Preliminary Notations and Results
Definition 2.1. A number b, b>a, is called a focal
point of a relative to (1) if there exists a nontrivial
solution x (t) of (1) with property that x’ (a) = x (b) = 0.
Definition 2.2 A point b is said to be the first
focal point of a point a if and only if b is a focal point

of a and there is no focal point of a smaller than b.
Definition 2.3. Equation (1) is said to be disfocal
on an interval I if any nontrivial solution of it which
has a derivative of zero at some point of I has no zero to
the right of that point on L. ‘
Definition 2.4. Matrix A (1) = (aij () is called
irreducible if it is impossible to have {1, 2, ..., n} =
W, INI=3,12@ #] and aij=0. for all
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iel,jel.
Throughout this paper, we make extensive use of
Green's function for the boundary value problem
") =-f®
x'(@=x(b)=0,
where a<b. Recall that
b-t, a<s<i<b,
Gsb= ' b-s, a<i<ssb.
The function G is continuous on the squarc
asssb, a<i<b. If f (1) is a continuous real valued

b

function defined for a<t<b and if x (1) = J G(s,t) f(s) ds

then x (1) is of class CZ on [a, b], x"(t) = -f(t) and x'(a) =
x (b)=0.

Given two vectors x = col (x,,...,x_) and y=
col(y,, ..., y,)inR", we write x<y(x<y) if for
each k, k=1,...,n, x, <y,(x,<y,). Let a be a fixed
number, for any b>a we let

K(b) = {continuous functions
u: [a, b]—»R " | u' (@)=0=u(b) and 0<u (t) for all t in (a,
b)}. Let A(t) = (a; () be an nxn continuous
matrix defined on [a,b]. Assume that
aij(t) > 0 for 1<i<n,1 <j<n and te{a, b] except possibly
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on a set of measure zero. If u:[a,b]oR" is
continuous, we define (Tu) (t) by

b
(Tw) © = | G(s,1) A(s) u(s)ds.
a ‘

It follows immediately that

T (u+v) = Tu+Tv,

T (cu) =cTu,ceR

ue K implies Tue K,

ueK, u(t) =0 implies 0 < (Tu)(t), te (a, b)
Let A(b) = {real numbers Al there existsue K(b), u#0,
and u(t) < AT(u)(t) for te (a, b)}.

Lemma 2.1.

A®)F=Q.1f A (b) =inf {MlA € A(b)}, then X o(b) > O.

Lemma 2.2.

There  exists ueK(b),u#0, such
u(t)= A ,(b) (Tu) (1) on [a, b].

Lemma 2.3. If there exists A, € A(b)and
w € K(b); w(t) # 0, such that :

w(t) = A ,(Tw) (1) for L € [a, b]

then A, (b) = A ,(b).

Lemma 2.4. Ifa<b,<b,, then A (b,) <A (b,).

Lemma 2.5. The function A (b) is continuous on

that

(a, <o) and A (b} as b—a.

Lemma 2.6. Let A(t):(aij(t)) and A(t):(aij(l)) be
nxn matrices which are continuous on [a,b] and for
1<i<n, l$an, O<a ij(t) <aij (t) on (a,b). Forue K(b
let

b
(Tu) (V) = f G(s,t) A(s) u(s)ds.

and K be the set of numbers A)‘ such
that u(t)<A(Tu) (), te(a,b) for some

ue K(b), u#0. If X o®)=inf (A e A}, then

N o) S A ().

Note: The above results have been proven in [5].

Main Theorems
Theorem 3.1. Let A(1)=(a;(1))and B(t) = (b; )
be two continuous nxn matrices defined on [a, b] such
that
0< bij(t) < aij(t), te [a, b], 1 <i<n, 1<j<n
and for some
te (a, b), ()Sbij(‘t—) < aij(?), 1<i<n, 1<j<n. Suppose
x" + B(t)x=0, x(t) =0, x'(a) = x(b) = 0.
Assertion. There . exists a

solution of

Fariabi

140

J.Sci.l.R Iran

u"+ A(u =0, u'@) = u(c) = 0, u(t) *£0 with a<c<b, and
ne K(c).
Proof. For te{a, b], we have

b
x(t) = L G(s, 1) B(s) x (s)ds.

Ifx (®=col(x 1), ..., X, (1)), let w(t) = col (X1 ,....| xa(0)).
Then we K(b) and w#0. For k=1, ..., n,
b

w ) =x.0l=1| G Zbkj (s) x; (s)dsl
=1

2

b

G(s) 2, by(s) I x(s)l s

jl

1A

b

G(s,t) Y by;(s) w,(s)ds.
=

a
Now by the uniqueness theorem for differential equation,
the components of w(t) cannot vanish simultaneously on
any subinterval of [a, b] since x(t) #=0. Thus since
bkj(s) < a,4(s), se(a, b), and by; (L) < a,;(t), we have

b
b

GG, Zbkj w,(s)ds <[ G(s,)
e

a

2.3,5(8) w;(9)ds

=l
a

for
, b
te [a, b). Hence, we have (2) O< w(t) < I G(s,t) A(s) w(s) &

for te [a,b). Let A (1) - (a;(® + _1_).
m

As the clement of A are strictly positive on [a, b], for
m21,we have,

b
(3) 0sw(1) < { G(s,) A (s) w(s)ds,
for te (a, b). For each m>1 and de (a,b], definc

d
(Tow) () = [ Gs,Ld) A_(s) u(s)ds

for uek(d); let A_ (d) be the set of numbers A such that
u(t) < AT u) () for te [a, d], and let

Ao () = inf (A Ae A_(d)).

If m <m, then each element of Ap, (1) is greater than
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thc‘cormsponding clement of Am, (), soby Lemma 2.6

{(4) m,<m, implics Kom‘ @< Romi(d).

From (3) we sce that 1e A _(b) for all m, and hence
Agn< Tforallm Ask (@ is - continuous,
decreasing ind, and A, (d)— +eo as d—sa. there oxists a
uniquc d_ € (a,blsuchthat A, (d ) =1. ‘
Morcover by (4) it follows that

' a<d,, =d_ ifm<m,

Lim

Hence, M—o0

d_= ¢ for some ce (a, b]. By Lemma

2.2 there exists u, € Kd,,), u, # 0, such that
d

u O=h_ (d) j " Glsd ) A_(s) u_(o)ds

0 ,
= { G(s,t.d,) A (s) u,, (s)ds.

Hence §, +A u,= 0, u (@) =u,(d,) = 0. Without loss
of gencrality as in the proof of Lemma 2.5
Lim u,(@=k=0.As A_(—A() uvniformly on
m—300 : ~
[a, b) it follows that if u(t) is a solution pf the initial -
value problem u"+ A(u =0, u'(@) =0, u(a) =k, then :
u_,()—u(t) uniformly on compact subinterval of (a, o).

Hence
Lim .

u@= M ) =0;
obviously ueK(c). To complete the proof we must -
show that c<b. Assume on the contrary that c=b, so that

b ; ,
5 uw)= ! G(s,t) A(s) u(s)ds.

2

b ;

let vi)= I G(s,t) A(s) w{s)ds.

2

Then v is of class C* on [a, b]. According to (2), .

0 < w{t)<v(l), te{a, b). Hence, by the nonnegativity of
the elements A(s), se(a, b), the strict positivity of

A(I), and the strict positivity of G(s,t) for a<s<b,
a<icbh, it follows that for te (a,b),

b
b

6 v(y=1 G(s,1) A(s) wis)ds< ] G(s,t) A(s) v{s)ds.

Similarly,
b
b
(T -} A(s) v(s)ds <- I A(s) w(s)ds = v'(b).

&
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Since, by the uniquencss thcorem, the components of
u(t) cannot vanish simultancously on any open
subinterval of (a,b), the same type of rcasoning shows
that ‘ ‘ ’

O<u(t), tefa, b)
b

w)=- } A(s) u(s)ds.

[ ] B
As v(b) = u(b) = 0, if >0 is sufficicntly small, then -
) O<u(t) - av(t), tela,b)

®  vd)-avd)<0, 4
If @ >0 is the least upper bound of the number o such
that (8) and (9) hold then by continuity ‘
(10) O0<u()- av(),ielab).
and
1 ud)-avip)<o
and such that for some k, 1<k<n, one of the following
two possibilities must hold: ;
Ifu=col (uy,..., u,), v=col (vy, ..., v), either
(12) uy(1)- & v,(1)=0for some {,a<t<b,
or
(13) uy(b)- T vy (b)=0.
However, as @ >0 we see from (5), (6) and (10),
b
w0 = | Ges) AW u(s)s,

and by (6)

b
g VD>~ @ f G(s,t) A(s) u(s)ds

therefore.
b

b -
uit) - & v(t) > { G(s.t) A(s) u(s)ds - @ f G(s,t) A(s) v(s)ds

b
= f G(s,0) A(s) [u(s) - T v(s)lds,

hence (11) is impossible.
Similarly, by (5), (7) and (11)
b

w®) =+ A® uds,

8

-a vy < o | A(s) v{s)ds, hence
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b

b
u'b)- av'(d)<- | A(s) u(s)ds+ o I A(s) v(s)ds

a

b
= ] A) [u(s) - @ v(s)lds £ 0,

which rulcs out (13). This contradiction gives the result.
Theorem 3.2. Assumc that the nxn matrix
B(L)=(bij(l)) is continuous on [a,b] and that

bij(l) > 0, 1<i,j<n. And lct b be the first focal point of a.

There cxists a nontrivial solution
u(t) =col (u, (v, ..., u, (1) of

X" +BUx 1) =0
such that u'(@a) = u) = 0 and

u(®M20,k=1,2,...,nandte {a, b].

Proof. For each integer m=1, 2, ..., let

B (0= (bij(t) + -!—). Let x(t) bc a nontrivial solution
m

of the boundary value problem x"(t) + B(1) x(t) = 0, x'(a)
= x(b) = 0, and assume there exists no nontrivial

solution of the boundary value problem x"(t) + B(t) x(t)
= 0, x'@@) = x(c) = 0, if a<c<b. As every element of

B, (), is strictly greater than the corresponding
element of B(t), it follows from Theorem 3.1 that there
exists a nontrivial solution of the boundary value

problem u_.(t) + B, () u,, (=0, u @)= (c,)=0, such
that a<c_<b and such thatu_(DeK(c ). As

C.
14) u, ()= L G(s,t,c,) B(s) u,(s)ds,

for ast<c , Let
Il B ()l = max
1<isn 3 (by(s) + L
fr m

and u_(t) = col (u, (1), ..., u, (D), let 1sk<n and
t€(a, c,,] be such that
u,, (t)=max max u,(t)
1<i<n ast<c
From (14) it follows that

cI‘I

i (<] G te) Y by + ;11-) (s

=
a

C

<u (D] 66 1 c)Y by )+ ;1]—)ds
j=1

a
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< umk(f)(cm-a)] "I B9l s

and henee

15) 1> 1

€. [ “11B,_ () | ds

thus, since || B_()|/=n/m +||B@)l| is bounded
independently of m, we infer the existence of a number
8>0 such that
a+8<c,<b m2l
As in proof of Theorcm 3.1 we may assume, without
loss of generality, that
u,,(@—k#0 as m-—oo
Lim
m—o0
u"(®+ Bt) u(v) =0,
u'@=0and u@@ =k

then the sequence {u_ (1)) °1° converges uniformly o u(t)

and that C,,= ¢ with a+3<c<b. If

on {a,b] and hence u(c) = 0. If c<b we would have a
contradiction to the previous assumption concerning b.

If a< t <b then ;<cm for sufficiently large m and as
u, €K(c), OSum(;). Hence OSU(I) so ue K(b) and the
theorem is proved.

Theorem 3.3. Let A(t) = (aij(t)) be an nxn matrix
which is continuous on [a,b] with ay; () >0 on (a,b); i,j

= 1, ..., n. If there exists a nontrivial solution
v(ty=col (v, ..., v,) of
(16) y'+A@)y=0

such that v'(a) = v(b) =0 and v, () > 0, k=1, ..., n, then
b is the first focal point of a relative to (16).

Proof. First we note that if &_has a focal point relative
to (16), then the first focal point of a relative to (16)
exists. Since

[ ’ G(s,t,b) A(s) v(s)ds

is a unique solution of the boundary value problem
x" = - A(t) x(t),
x'(@)=x(b) =0,

we must have

b
an v(t) = [ G(s,t,b) A(s) v(s)ds.
- -, _ max max v.(1)
Let te [ab] besuchthat v, (t) = 1sjn e [a,b]l



J.8ci. L. R.Iran

By the same argument that was used to establish the
inequality (15) it follows that

baz — 2

b
[HA(S)Has

where b is any focal point of a relative to (16). If a did
not have first focal point relative to (16) then the left
side of the preceding inequality could be made
approaching zero with the right side approaching
infinity, a contradiction. We notc that by (17) and
Lemma 2.3, Ay(b) = 1.

Suppose b is not the first focal point of a relative to
(16). Then there exists a point b’ in (a,b) such that b’ is
the first focal point of a relative to (16). By Theorem.
3.2, there exists ue K(b'), u#0, satisfying :

u"+ AGu=0

therefore

¥

)

u(t) = } G(s,t,b") A(s) u(s)ds.

*

By Lemma 2.3 A4(b") = 1. But this contradicts the strict

monotonicity of A(b), established in Lemma 2.4. The

proof is complete.

Theorem 3.4. Let A(l) :(aij(t)) be an nxn matrix
which is continuous on [a, ) with a;(t) 2 0. If
(18) y'+A@Qy=0
is disfocal on {a, <), then there exisis a nontrivial
solution u(t) of (18) such that w'(a) = 0 and

0 < u(v) for t 2 a. Furthermore, if A(t,) is irreducible for

some L, t4>a, then O<u(t) for t>a.

Proof. For each number m, letA = (aij(t) + i).
m

We first show that for each m, a has a focal point, and

hence first focal point relative to
(19) y'+A y=0.
Let Y>land let B, be the diagonal matrix given by

B, =diag (—L, J--). Clearly, cach element of
m, m,
A, is greater than the corresponding clement of B,
Furthermore, z(t) = col (Cos 1
my

solution of
z'+B,z=0

satisfying z'(a)= O =z(a+-—§- \/my). Therefore, by
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Theorem 3.1 a has a focal point to the left of
a +nv¥my relative to(19). This shows that the first
focal point of a relative to (19) exists (see the proof of
theorem 3.3). For each integer m, let ¢, denote the first
focal point of a relative to (19). If m <m,, then the
elements of Am‘ are strictly greater than the
corresponding elements of A Hence by Theorem 3.1,
By Theorem 3.2,
Y€ Kc,p), ¥, #F 0, satisfying

yot A1) y,=0.
Multiplying the preceding equation by a suitable
constant, we can assume without loss of generality, that
y,.(@ — { asm— oo, where |[{|| =1. By continuity
with respect to initial condition and parameters, if y(t)
satisfies

Cm, Cr, - there exists

y"+ Ay =0, y'(a) and y(a) =C,
then y_ — y uniformly on compact subintervals of

[a, «<). Now, for the strictly increasing sequence
{cn) ;';:1, one of the possibilities holds. (1)

Lim

Lim c
m—yec ™

300 =00, Suppose (1)

€,y = C<o0, (2)

holds. Then y(c)= Ié“:fm Y (€)= 0, contradicting

the assumption that (18) is disfocal on {a, =<). Thercfore,
(2) must hold. For any fixed 1, a<i<eo, wc have

Lim : .
y{t) = 300 Y. Since y eK(c,),0<y (O if
¢,,>t. Hence 0 <y(1), and the first part of our theorem is

proved.
To prove the last part of our thcorem, assume that
AQ,) is irreducible for some ty>a. For cach k, k=1, ...,

n, u, satisfies the equation
n
u_+ a,(Ou=0.
=l

Hence u; (1) £0: Since u'(@ =0, v, (a) =0, and since
u; (< Oforallt2a,u, is dccreasing. If at
1*>a, u, (1*) =0, then u', (1*) is equal o zcro. This
implies that u', = 0. Thercfore u, = 0. Suppose it is
false that O<u(l) for t>a. Let
1= {i,i=1,...,nlu;1)=0}, and let j= {1, ..., n} - L

Then {1, 2, ..., n) = IV, InI=@. For ecach
j€l, a j(t) > 0 for t>a. For each i€l and s>a, we have
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0=y (§)+ Za‘k(s)uk(s) Za,k(s)uk(s) zau(s)u(s)

k=1 k=1 ie)

Smce u; (s) >0 and a;(s)2 0, it follows a, (s) . 0. This

'shows that a ;(5) =0 on (a, ) forie andya!
comrad:ctxon Alt o) is ureducnble
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