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Abstract

A mathematical analysis has been carried out for the axial flow of a Bingham
plastic fluid, in the Concentric Cylinder Viscometer which consists of a cylindrical
sample holder (the cup) and a cylindrical spindle (the bob) coaxial with the cup. The
fluid to be tested flows through the annular gap of the cup and the bob system,
sheared by the rotation of the inner cylinder, while the outer cylinder is held
stationary. This is a case of helical flow in an annular region. An attempt has been
made to direct the analysis toward an examination of the relationship between
moment (M) and angular velocity (€2) at the inner cylinder. Since M and Q are
proportional to the shear stress and shear rate respectively, we may thus investigate
the relationship between shear stress and shear rate and the dependence of this on
axial flow rate. We have shown using numerical solutions that axial flow has no
effect on shear rate. A definition for an approximate viscosity has been presented
and a comparison has been made between predicted approximate and true viscosity.
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Introduction

Rotational coaxial cup and bob rheometers are widely
used in industry for the measurement of fluid viscosities.
An on-line rotational viscometer (Figure 1) is
sometimes favoured where the continuous measurement
of viscosity of a process fluid is required. The flow
pattern generated in an on-line rheometer could be of
helical nature caused by the superposition of an axial
flow on the rotational flow generated by the rotating
component of the rheometer. The rotational motion in
this rheometer may be considered as a simple shearing
flow.

Theoretical analysis for helical flow was first
considered by Rivlin [1]. Subsequently, the detailed
formulation of the solution in the most general way was
presented by several authors [2-5] considering unsteady
state, laminar, tangential flow of an isothermal,
incompressible viscous fluid in the annular space
between two cylinders in which one or both might have
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been rotating. Fredrickson [6] suggested a methc
solve the problem of combined axial and tangential
of Bingham plastic fluid in concentric cylinder an
He also demonstrated how his equations coul:
generalised to give a solution to the problem pose
Rivlin. Tanner [7] presented the theory of helical flo
applied to a model due to Oldroyd [8] along with ¢
experimental results. Specific helical flows have

studied experimentally by some authors [9,10
number of other approaches to the solution of
equation of motion for helical flow exists [11]. Rec:
Huilgol [12] solved the helical flow for general flui
terms of four parameters including one related to pres
drop along the axial flow. He proposed a trial and «
method to solve his equations. No theoretical result |
his analysis is available at this stage. Bhattacharya (
[13] solved the problem of axial flow in a rotati
rheometer for power law fluids. Their solution
obtained in terms of three parameters, i.e. torque per
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length, axial flow and angular velocity and the two
parameters for the fluid model. They compared
experimental results with the predicted values from their
theoretical analysis and observed good agreement.

The aim of this paper is to extend the analysis for
helical flow of a Bingham plastic fluid in an annular
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Figure. 1. Axial Flow Rheometer

Mathematical Model ‘

We consider the steady helical flow of a simple fluid

in the annular space between two coaxial circular
cylinders. We use cylindrical coordinates
K=z, =r,a’ =0 (1)

We envision such a flow to be generated by

imposition of an axial flow, characterized by Q and by
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steady rotation of the inner cylinder (or bob of radius

R,) of finite length rotated with angular velocity 2. The
shear stress induced by this rotation gives rise to a
moment M, experienced at the inner cylinder, and
measurable there. Fundamental to such a device is a

" relationship between M, Q and the physical parameters

of the fluid; it is not clear how the M versus
relationship is likely to be affected once an axial flow, Q
is introduced. We will attempt to clarify this matter.

This important class of flow which is admitted by
virtue of our broadened classification is that which
Coleman and others have called "Curvilineal flow".
These are detined by the criterion that contravariant
components of the velocity field have the form

Y=(v().Oxw(r) )
which automatically satisfies the equation of continuity.

We express the gravitational force in terms of a scalar
potential y by

=y ©))
and define
D=P+py Gy
where p is the fluid density (constant), P is the fluid
pressure. Thus the components of the equation of

“ motion, written in terms of physical components of the

152

stress tensor are
1 d 1 dD 2
—— ) - =t g - —— = -PIO o)
rdr @ ® P
1 d 5P
18 n,)-22=-0 ©
dr @ &
1 d 2 oD
L& o) - 2= ™
r dr “7 5o
where ten taoy ez ey 2T€ the wusual
components of the stress tensor.
In the present example, we obtain
V' (0}
by =g M@ 5 taw = lé— @) ®

where T the shear stress, will depend on the local rate
of shearing, &, given by

& =V(v) +qw)’ ©)
We know from {2) and our postulate of a simple fluid
that the stress can only be a function of r. This leads to
the conclusion that ® can at most be of the form
D =g (r)+20.,24+¢,0 (10)
where o and ¢, are constants. Then integration of (6)

and (7) results in

€3]

=Ocr+lB
T

L)
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where the constants are determined by application of
suitable boundary conditions.

From a combination of (8) with (11) and (12) there
results a pair of differential equations for the velocity

te) (12)

components
vi(r) = {or + P— L (13)
r| (&)
! = L EZ_ ._g_ 14
@) (Zr c, + k) (14)

where from (9) one may write

2

ar+ B 24
r

1
r(&)=| S 52—) Zl = f0(15)
2 e
E=1" (fO) (16)

These relationships are well-documented in the
literature, for example see [14].

Thus in principle we can solve for the velocity
profile from (13)-(14) once the boundary conditions, and
hence the values of c,, ¢,, 0., and P are known. We see
that the velocity field is completely determined, for a
given set of boundary conditions, by the single material
function 1(§).

The non-slip condition applied at the inner and outer
cylinders yield the boundary conditions

vR)=V(R, =0, a7
oR)D=Q, oR,=0 (18)
where Q is the angular velocity of rotation of the inner
cylinder.
Analysis for a Bingham Plastic Fluid
We now consider the situation where the relationship

between T and & is as follows:

(&) =8, + 1, & and n@) =p, +8,&7 (19

“where M(E) is known as the shear-dependent
viscosity or "apparent viscosity", Sy is the yield stress
ahd K, is the plastic viscosity.

Equations (13) and (14) then become
1

. 2
Hp+5y *w?+vH 2

V' (r) =or + E 20)
)y

1

up+8y(r2co‘2+v'2) 2 M

2nr

ro (r)=- 1)

2

Equations (20), (21) together imply
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v =2E (@l B o (22)
M

Substituting equation (22) into (21) and noting that
®'<0 everywhere, since the inner cylinder rotates and the
outer one is stationary

o=’ yaoap @3
™,
where 1
5 2.2 =
\v(r,a,B)=+—Lr'l 1_‘_4ﬂ:r (w2+B)2 2
Hp m?
(24

and integration of (23) subject to the boundary
conditions (18) gives

M
4nup

RZ
v (r, 0, Pydr (25)

®R?Z-RP) +‘R

Q=

an equation linking Q and M through o and B.
Applying equation (23) to (22) and integrating
subject to the condition (17) yields
R

2

G, (@ f=

RZ
(o +prt dre 2 ’ @’ +B)r’ y o) d
p’p M R,

RI
=0 (26)
However, there is a further constraint on the axial
velocity v (r) that arises from the assumption of
incompressible flow, i.e the axial flow rate at any cross-
section of the annulus is constant.

If Q is this constant rate, this implies the extra
condition

RZ
Q=2n [ rv(r)dr (1))
Rl
Integrating by parts using (17) we obtain
RZ
T ‘ r’v'(r)dr + Q=0 (28)
l{I

Equations (28), (22) and (23) together give

R,
R

G,(@,B)=—1— (ar2+B)rdr+l (o +Br'y (, o, Par+ M
Iy, R, o’
R

=0 (29)
We may now regard the problem as one of finding o
and P from the simultaneous nonlinear equations
G, (o, B)=G, (e, B)=0 (30)
This will allow us to obtain the function v(r), ®()
and hence the complete velocity field. More significantly



Vol. 2, No. 3,4
Summer & Autumn, 1991

for the present discussion o and B may be substituted
into (25) to establish a relationship linking Q and M
with Q appearing as a parameter, via equation (29).
There are two special cases of the above analysis that
deserve particular comment,
(i) For an incompressible Newtonian fluid
6, =0and M, =H,, the constant fluid viscosity, Then

equations (26) and (29) become

=0 31

2

.;_(Rg-Rf)awln
1

and

%(Rg_RT)a+-§-B(R§-Rf)+ “;Q =0(32)

respectively, providing a relationship of o and B in
terms of Q. However, since y (r, o,p) = 0, the
relationship (25) is then independent of o and P, and
hence Q as follows

=M

nu

®R}?-RP) 33)

which is our basic relationship linking  and M.

(ii) With no axial flow v = 0, and Q = 0, Equation
(21) reduces to
M

2nr
This equation holds in the region R y <t <R, where

(34

R y is given by
(35

IfR, <R, particles in the fluids have the same
angular velocity as they have at radius R, and the
material rotates as a rigid body with the inner cylinder.

The relationship between 2 and M depends on whether
R, is greater or less than R .

If Ry <R <R ,, some material near the outer

cylinder will not be sheared, therefore
3 R
M RZP-RH+ L2

A, By R,

we have plastic flow for R, <r <R and solid like
behaviour forR, <r<R,

Substituting for R, from (35) we get
dy M
2u, 27R 28y

If Ry 2 R, so that all the material is sheared

Q= (36)

M

1-1In -
4mp pR§

Q= 37
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M

§, R
RY-RY)+ L2

Q (38)
TH, Hp 1
which reduces to (33) when 8y =0andp =4, as we
would expect.

Estimation of Shear Stress and Viscosity
In the present problem non-zero components of the
stress tensor are shown in equation (8), where T (2 is
the shear stress in the z direction and 7,4 is the shear
stress in the 8 direction. The total shear stress in the
z - 0 plane may be defined as
2 2
T=V 6t Ty
Based on the local rate of shearing & given by (9),
viscosity may be obtained as shear stress divided by the

shear rate, i.e. ]
V12g + 12
(r0) (rz)
Vv? + (@)?

which is often called the effective viscosity.

Viscosity can be calculated from the relations
Ty =N &)V, 1.9 =n@1oré)ro (41)

(39

n= (40)

~ Fluidity Function
The total shear stress T () may be defined as
T®=n@®¢& “2)

Assuming that 7 is a single valued function of &, we
can define the inverse function of viscosity as fluidity

function ¢ (1), [15], so that

E=16 (1) (43)
After using equation (19) and (39) we obtain
8y
n=p, |1+ (44)

2 2
Vr(r6)+ T(rz) - 8)’

We can also find viscosity by substituting equation
(9) into (46) as

+ S

Vv'? +(nu)‘)z

Definition of Approximate Rate of Shear
and Viscosity
As a special case of the helical flow, we may obtain
the Poiseuille flow and torsional flow, if we set ® =0 in
the first case or v = 0 in the second.
In the narrow-gap Couette rheometer, the shear rate

n=u, 45)

él can be effectively taken as constant throughout the

liquid, given by
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R, - R,
where Q is the rotational speed and R ,, R, are the inner

and the outer cylinder radii respectively.
In the case of tube flow (Poiseuille flow), the shear
rate &, can be taken as

&, (46)

gy= — @7)
R,-R,
where
ve—L %)
n (R; -R}))
We define the approximate rate of shear as
E o= VET + &3 49)
Therefore the approximate viscosity is
Napp. = Hp + 3, E»‘;;p- G0

Numerical Solution
The values of o and B of equation (30) are found by a
simple numerical procedure which uses the secant
method to solve

G, (@), P =0 Sh
where for each value of B, the value of o(B) is found by
solving the other non-linear equation

G, (o, B)=0

by further use of the secant method.

(52)

Specifically, a sequence of approximation Bz’ [33,

... is generated from initial estimates B, and B , using
G (0 (Biy1)s Bist) Bivs By

G, (aBi,1):Bisi) -G, @By, B
(53)
fori=1,2, .. where E(ﬁi) is an estimate of
o (B,), the limit of the sequence «; ,, @; 3,... generated
by

Bi+2=ﬁi+l -

Gy (0 4y, B (0 54y — 0y)
Lje2 =054
G, (0544, B) -G, @ By
54)

ol

for j=0.1,2, ...
This procedure proved to be robust to the choice of

initial estimates of o and f and was found to be rapidly
convergent. Consequently, a common initial value may
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be used for o, i=1L2,.. . ando;, i=12, ..
without significant increase in the computational effort
needed to find high accuracy estimates of ¢ and f.

The integrations needed to evaluate G, and G, were
carried out using the IMSL Version 10 adaptive
integration routine QDAGS. Since the integrands have
no exceptional features, little difficulty was experienced
in achieving high accuracy with this routine. These
numerical integrations were not a significant source of
error in the estimation of ¢ and §.

We calculated the values of o and by substituting
these values into equation (11). We find that there is a
point r =R such that R | <R <R, where 7,, =0 which

means that [12]

R? <.B R
o

Clearly this provides a simple check on our
calculation. Also the values of @ and B obtained in such
computation could now be applied to the equations (40),
(41), (44), and (45) for which the values for viscosity
can be estimated in various ways. We found the same
value for viscosity from different relationships.

Alternatively, and more significantly for the present
discussion, the equation may be applied to examine the
relationship between shear-rate and shear stress at the
inner cylinder r=R, and also at the different radial
points in the annular region.

Finally, the values of o and B obtained from
computations could be applied directly to the developed
mathematical models to obtain the function v and @
via equations (22) and (23), and hence the velocity
profile (2) by further computation.

Results and Discussion

Equation (30) has been solved to provide a
relationship between the parameters M and Q. M can be
related to stress, T by the following relation

M

Zan

where 1 is the shear stress at the inner cylinder.
Theoretical results of shear stress versus shear rate

T= (55

have been obtained for different axial velocities. In
Figure 2 these theoretical predictions for the axial flow

rates of 1x 10, 10x10®, and 100x10° m?/s are
given, assuming the Bingham plastic parameters as
H,=2Pasand 8, =5 Pa. It is interesting to note that

the axial velocity does not have any effect on the shear
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Figure.2. Effect of axial flow on shear stress.
‘ By =2.0Pas, 8, =5Pa

Shear stress (Pa) Shear rates (s-1)

stress versus shear rate relation. Similar behaviour was
observed as noted in Figure 3 when the yield stress(Sy)
‘was increased to 10 Pa.

It is recognised that in a Couette flow the shear stress
varies with the radial position within the annular gap.
Variation of viscosity and shear stress with radial
position is given respectively in Figures 4 and 5. The
point of minimum shear stress and maximum viscosity
appcars to be closer to the inner cylinder than the outer
cylinder. A significant variation of the magnitude of

 these variables:'with radial position is also noted. Tt is

obvious that the viscosity measurement should be
consistently carried out at a particular radial position,
which in this case is the surface of the inner cylinder.
The estimated viscosity at the surface of the inner
cylinder for Q= 1x10°® m%/s is presented in Figure 6.
As expected the viscosity data is identical to that
estimated by substituting B, = 2 Pas and Sy =5 Pain
equation (19).

An approximate value of the viscosity has been
calculated using equation (50). This prediction is simple
and may be used to compare with the rigourous
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Figure.3. Effect of axial flow on shear stress.
W, = 20 Pas, 8, = 10 Pa
Shear stress (Pa) Shear rates (s-1)

prediction presented in Figures 2 to 6. A comparison
between these apprommate values and the rigourous or
'true' values is presented in Figure 7 and 8. The
difference between the true and the approximate values is
reduced when shear rate increases. Moreover this
difference is larger at the inner surface than at the outer
surface. However, the trend of the result indicates that at
high shear rate the difference between true and
approximate viscosity approaches zero.

In conclusion, this analysis shows that the axial flow
rate does not have any effect on the viscosity

measurement in a rotational coaxial rheometer.
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Figure. 5. Variation of viscosity in the radial direction of
the annular gap
Ry = 00215, R,= 0.0242, p, = 2.0 Pas, §, = 5.0 Paand Q= 10% mss
Viscosity, (Pas) Radial position, m
(Times 1E-2)

28

27

26

: 25

24

23

22

i1

3 i

21 L
5 10

15

20 25 30

Figure.6. Estimated viscosity at the bob surface.
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Figure 7. Comparison between true and approx. viscosity
atR, =0.0242 m
B, =20Pas, 8, =5 PaandQ=10"m’/s
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