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Abstract
A revised analysis of the effect of long-range nonspherical terms in the
intermolecular potential on the second virial coefficient is presented with a
preferred Hartree-Fock-Dispersion functional (HFD-C) spherical core treatment
of the integrations for small intermolecular distances. A set of modified numeri-

cal tables for the accurate calculation of the nonspherical contribution to the
second virial coefficients is presented and a new correlation equation of Bo('I")

for CO,, CS, and C¢H is reported.

Introduction

The virial expansion of the equation of state of
gases at low and moderate densities can be used to
obtain information about intermolecular forces, in par-
ticular the second virial coefficient B(T) offers a con-
venient source of information on the intermolecular
potential function.

The well-known statistical mechanical expression
for the second virial coefficient is

B(T)= ;—A;% l rar I } [1-exp (U@ /ksT}d @,d;

1
where N, is the Avogadro’s number; ky, the Boltzman
constant; U(r), the intermolecular potential; o, an an-
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gular variable determining the orientation of the mol-
ecule, and Q.= [dw. A standard method for the calcu-
lation of the second virial coefficients of nonspherical
molecules is the perturbation scheme developed by
Pople [1] and Buckingham [2], who represented the
intermolecular potential as a spherically symmetric
core plus a contribution due to the asphericity of the
molecular charge distribution, such as interactions of
dipole-dipole, quadrupole-quadrupole, and etc. so that

U(r)= Uy(r) + U_(r) )

in which Ujy(r) depends only on the distance r between
the molecular center of mass, and U, depends also on
the angle ®, the relative onentatnon of the molecular
pair. For the spherical symmetric part, Aziz and Chen
{31 have proposed six models HFD-A, HFD-B, HFD-
C, HFD-D, HFD-I, HFD-II which lead to better agree-
ment between theoretical and experimental results.
They preferred HFD-C in moderate and high tempera-
tures upon comparison of theoretical and experimental
results. On the other hand, the long-range orientational
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part of molecular interactions can be expanded in a
power series, i.c., a multipole expansion. This expres-
sion may be written explicitly in terms of tensorial
interactions [4]. The corresponding expressions for the
nonspherical contributions due to molecular interac-
tions for two unlike axially symmetric molecules are
summarized in the monograph of Mason and Spurling
[5].

The nonspherical contribution to the second virial
cocfficient depends on the form assumed for the domi-
nant spherical part and is usually expanded accord-
ingly to produce an expression that gives corrections
to the contribution in the form of series that converge
rapidly for high temperatures. The coefficients of the
series are integrals that are functions of the tempera-
ture, and are usually evaluated numerically and tabu-
lated [6].

The main inadequacy of the above development is
the form usually assumed for the long-range
nonspherical terms in the potential, which is kept
throughout the integrations even down to r= 0. In fact,
the multipole expansion is not valid at small distances
between molecules. Extension of the expressions for
the long-range directional interactions into the region
of small distances between molecular centers leads to
values of the parameters which are not uniquely de-
fined. The formulas are convergent for high tempera-
tures, but the point is that it is at the high temperatures
that effects occurring at small intermolecular separa-
tions might be expected to be most important.

In this paper, we use a convenient function G (r) in
such a way that the usual long-range nonspherical in-
teractions are modified and the effects of short-range
interactions can be used for calculation of the integrals
<r™> involved in the nonspherical contribution to the
second virial coefficient.

Our results are presented as a set of improved
tables for the accurate calculation of the nonspherical
contributions to the second virial coefficients. The re-
sults are qualitatively similar to the previous work [7],
but the function defined in this paper produces more
effect on the final virial coefficient than does the pre-
vious paper.

Furthermore, the reduced spherical part of the sec-
ond virial coefficient B, (T") can be constructed by
first calculating the contributions B, (T), subtracting
the calculated B (T) from experimental B(T), and
then reducing with two scaling parameters ¢ and €.
However, we conclude that the correlation equations
of the functional Bo'(T') for several nonspherical mol-
ecules presented earlier [8], which did not include any
convenient function G_(r), do not need to be revised
except for CO,, because the higher-order terms in the

Maghari and Moosavi

109

VolL8 No.2
Spring 1997

additive contribution arising from the quadrupole in-
teractions are not negligible in this case. As a result, a
new correlation equation of Bo'(T') for CO, is pre-
sented. Next, we apply the method to calculate the
second virial coefficients of CS, and C¢H, and present
the correlation equations of functional B,*(T*) for
these two molecules.

Calculations

If two nonspherical molecules interact, the poten-
tial energy will depend on the relative spatial orienta-
tions of the molecules as well as on the distance apart.
The intermolecular pair potential can be obtained from
Equation 2. We suggest that the expression for the
orientational potential can be modified in conjunction
with a controlling function

G,.(r)sexp[-n(r?m-l)z] I<fm

Gp(n=1 I>r;m 3)
where 1 is the position of the potential minimum.
Therefore, we write the intermolecular pair potential
(2) as

U(r)=Uy® + U_ (). G, (1) “)
The perturbation expansion for the second virial coef-
ficient then becomes

B'(T)=Bo"(T) +Bu"(T") )
where

T =ksT/e (6)
B'=B/b bE%ﬂCNAC3 Q)]

Here € and o stand for the depth of the potential well
and the value of r for which Uy(r)= 0, respectively.
The nonspherical contribution to the second virial co-
efficient, B ", can be written as [6]

B '(T")=B,'(uu+B_'(uf)+B_'(66)+B_ (1, indu)+
+B,"(u6indp)+B_"(6,indu)+B (1, ind6)+B_*(C zanis)
+B_"(ux6)+B (1, indpex 6, indy)+
+B_"(uoxy, indp)+B (1<, indp)+
+B_"(86xCcanis)+B (4, indpx<C anis)+

+B_ *(6xindpxC anis)}+B__*(shape) ®)
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where

B_"((=-2 0y s+ L Eoy T+
3 T 25 T

B_(ug=-6 EYy [+ 126 & ? Flig+...]

5 T* 3185 T

* 2 2
B, (06)=-8 (€’ Mo- L@ Lis+...]
5T 49 T

q *
B_ (1 indp= -1_25.(!_‘#)2 M+ 110642 Iig + ...
T

Bn;(lle, indg)=- 876—;- (“o—f“‘-f Ma+...
T

2
B,'(6, mdu)=-i—§%(ﬂffl)2 [lis+.

Table L. Values of dimensionless integrals I (T") as shown in Equation (10)
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9-G)

(9-H)

. ‘9" 2 “
B_'0x8)=3E 0 P (DA E s+, 0D
5 T T 11 T

B_'(4 indpx O,mdu)=-§§4_;(“_egi)2h4+...
T

CR)

* - Q * L Q
B ny,mdp):-;l("_;.)zad Iz [og +ilé_(£‘7)+...]
T T

(9-K)

* > 2 2 *
B_'(ux6,indy)=-28 £ Y E@Hoa Let... (O-L)
385 1T T

B_'00xGeani)= 2L @) E)@lu+...  (9-M)
25T T

™ I L L L L,
0.5 1.7672 1.9599 2.0893 2.1724 2.2213
0.6 1.3997 1.5354 1.6268 1.6861 1.7218
0.7 1.1950 1.2999 13711 1.4180 1.4472
0.8 1.0672 1.1534 1.2125 1.2522 1.2778
0.9 0.9809 1.0548 1.1062 1.1415 1.1652
1.0 0.9194 0.9848 1.0310 1.0634 1.0860
1.2 0.8386 0.8934 0.9333 0.9628 0.9848
14 0.7888 0.8376 0.8744 0.9027 0.9251
1.6 0.7559 0.8011 0.8362 0.8644 0.8875
1.8 0.7329 0.7759 0.8103 0.8388 0.8631
2.0 0.7163 0.7580 0.7922 0.8213 0.8469
25 0.6909 0.7315 0.7665 0.7979 0.8269
3.0 0.6779 0.7188 0.7556 0.7897 0.8222
35 0.6710 0.7131 0.7520 0.7889 0.8248
4.0 0.6677 0.7112 0.7522 0.7920 0.8312
45 0.6664 0.7115 0.7548 0.7973 0.8397
5.0 0.6664 0.7132 0.7587 0.8038 0.8492
6.0 0.6688 0.7190 0.7687 0.8188 0.8699
7.0 0.6727 0.7262 0.7799 0.8346 0.8908
8.0 0.6773 0.7339 0.7913 0.8503 09114
9.0 0.6822 0.7418 0.8027 0.8656 0.9311
100 0.6871 0.7495 0.8137 0.8803 0.9499
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Table I. Continued
T Ill Ilz IIS Il4 IIS
0.5 2.2454 2.2499 2.2404 2.2206 2.1932
0.6 1.7401 1.7456 1.7415 1.7304 1.7142
0.7 1.4633 1.4698 1.4693 1.4636 1.4541
0.8 1.2934 1.3011 1.3032 13013 1.2963
0.9 1.1804 1.1893 1.1937 1.1948 1.1934
1.0 1.1018 1.1119 1.1182 1.1217 1.1232
1.2 1.0014 1.0139 1.0237 1.0313 1.0376
14 0.9432 0.9581 0.9708 0.9819 0.9921
1.6 0.9072 09244 0.9399 0.9542 0.9677
1.8 0.8845 0.9039 0.9219 0.9390 0.9557
20 0.8701 0.8916 09120 0.9319 09514
25 0.8544 0.8809 0.9070 0.9331 0.9593
30 0.8538 0.8851 09164 0.9481 0.9804
35 0.8604 0.8960 0.9322 0.9691 1.0071
40 0.8705 0.9103 0.9510 0.9929 1.0362
45 0.8825 0.9263 0.9713 1.0178 1.0661
5.0 0.8955 0.9430 0.9921 1.0430 1.0961
6.0 0.9224 0.9769 1.0335 1.0927 1.1547
7.0 0.9492 1.0099 1.0735 1.1402 1.2104
8.0 0.9750 1.0416 1.1115 1.1852 1.2629
9.0 0.9996 1.0716 1.1474 1.2275 13122
10.0 1.0230 1.0999 1.1813 1.2673 1.3586
Table I. Continued

'r. IIG Il7 Ill Il9 120
0.5 2.1602 2.1236 2.0843 2.0434 2.0016
0.6 1.6943 1.6718 1.6476 1.6222 1.5962
0.7 1.4418 1.4276 14122 1.3959 1.3792
0.8 1.2892 1.2807 1.2713 1.2612 1.2507
09 1.1904 1.1861 1.1811 1.1756 1.1699
1.0 1.1233 1.1225 1.1210 1.1193 1.1173
1.2 1.0429 1.0475 1.0518 1.0559 1.0601
14 1.0015 1.0106 1.0195 1.0285 1.0376
1.6 1.9808 0.9938 1.0068 1.0200 1.0334
1.8 09722 0.9887 1.0054 1.0224 1.0399
20 09710 0.9908 1.0109 1.0316 1.0528
25 0.9860 1.0133 1.0414 1.0704 1.1005
30 1.0136 1.0478 1.0832 1.1199 1.1582
35 1.0463 1.0870 1.1292 1.1733 1.2193
40 1.0811 1.1279 1.1766 1.2276 1.2810
45 1.1164 1.1690 1.2240 1.2816 1.3421
50 1.1516 1.2096 1.2706 1.3346 1.4019
6.0 1.2198 1.2882 1.3603 1.4363 1.5166
7.0 1.2843 1.3624 1.4448 1.5320 1.6242
8.0 1.3450 1.4319 1.5240 1.6216 1.7251
9.0 1.4020 1.4971 1.5982 1.7054 1.8195
10.0 1.4554 1.5583 1.6677 1.7841 1.9080
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Table I. Continued

T L, L, Ls L, Ly

05 1.9595 19175 1.8758 1.8349 1.7948
0.6 1.5700 1.5438 1.5180 1.4925 1.4676
0.7 13623 1.3455 1.3289 1.3126 1.2968
0.8 1.2402 1.2297 1.2194 1.2095 1.1999
09 1.1641 1.1585 1.1530 1.1478 1.1430
10 1.1154 1.1136 1.1121 1.1109 1.1100
1.2 1.0643 1.0688 1.0737 1.0789 1.0845
1.4 1.0469 1.0567 1.0668 1.0775 1.0887
1.6 1.0473 1.0617 1.0766 1.0922 .1.1085
1.8 1.0579 1.0766 1.0960 1.1162 1.1373
20 1.0748 1.0976 1.1213 1.1459 1.1716
25 1.1317 1.1641 1.1979 1.2331 1.2699
30 1.1980 1.2395 1.2829 1.3283 1.3758
35 1.2673 13176 1.3702 1.4254 1.4833
40 1.3369 1.3956 1.4572 1.5219 1.5900
45 1.4056 14724 1.5427 1.6167 1.6946
50 1.4727 1.5474 1.6260 1.7090 1.7966
6.0 1.6013 1.6909 1.7856 1.8858 1.9918
7.0 1.7220 1.8255 1.9353 2.0517 2.1752
8.0 1.8349 1.9516 2.0755 22073 23473
9.0 1.9407 2.0697 2.2070 23532 2.5088
10.0 2.0400 2.1806 2334 2.4902 2.6606

Table 1. Continued

T L, L L L, I,

0S5 1.7557 171177 1.6809 1.6453 1.6109
0.6 1.4434 1.4200 1.3973 13754 13544
0.7 1.2815 1.2667 1.2526 1.2391 1.2262
0.8 1.1908 1.1821 1.1740 1.1664 1.1593
0.9 1.1386 1.1347 1.1313 1.1283 1.1259
1.0 1.1096 1.1096 1.1101 11111 1.1127
12 1.0907 1.0973 1.1045 1.1123 1.1207
14 1.1005 1.1129 1.1260 1.1398 1.1544
1.6 1.1255 1.1433 1.1619 1.1814 1.2018
18 1.1592 1.1822 1.2061 1.2311 "1.2573
20 1.1984 1.2263 1.2555 1.2859 13177
25 1.3083 1.3484 1.3904 1.4343 1.4802
30 1.4255 1.4775 1.5321 1.5893 1.6492
35 1.5441 1.6078 1.6748 1.7452 1.8191
40 1.6615 1.7368 1.8160 1.8995 1.9873
45 1.7767 1.8632 1.9545 2.0508 2.154
50 1.8890 1.9866 2.0897 2.1986 23138
6.0 2.1041 2.2230 2.3490 24825 2.6240
70 23063 24455 2.5933 2.7503 29170
8.0 2.4962 2.5546 2.8232 3.0025 3.1933
9.0 2.6746 2.8512 3.0394 3.2399 3.4537
100 2.8423 2.0361 3.2429 3.4636 3.6991
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Table II. Nonspherical contributions, B , (cm*/mol), for gases as a function of temperature.

Values of force parameters for N,, 0,, CO,NO, N,O, CH, C,H, and CO, are given in Ref.

8 and for CS, and CH,inRef. 11.
T .

N, o, CcO NO N,0

Kor°C
100K -3.8004 0 e -35.0401 mm——— e
150 -1.4276 -1.2205 -13.4387 -6.0383 -
200 -0.7584 -0.6301 -7.2059 -3.0963 —
250 -0.4765 -0.3905 -4.5509 -1.9036 -
300 -0.3304 -0.2689 -3.1646 -1.3002 -6.7086
0°C -0.3983 -0.3252 -3.8100 -1.5792 -8.4812
20 -0.3459 -0.2817 -3.3119 -1.3636 -7.1028
40 -0.3035 -0.2467 -2.9093 -1.1908 -6.0403
60 -0.2689 -0.2182 -2.5789 -1.0501 -5.2040
80 -0.2400 -0.1947 -2.3041 -0.9340 4.5337
100 -0.2158 -0.1749 -2.0728 -0.8368 -3.9882
150 -0.1697 -0.1375 -1.6321 -0.6533 -2.9972
200 -0.1375 0.1114 - -0:3231 -0.5261 -2.3428
250 -0.1140 -0.0924 -1.0974 - - .0.4340 -1.8872
300 -0.0962 -0.0782 -0.9270 -0.3651 -1.5566
350 -0.0825 -0.0671 -0.7949 -0.3119 -1.3087
400 -0.0716 -0.0584 -0.6903 -0.2701 -1.1177
450 -0.0629 -0.0513 -0.6059 -0.2364 -0.9673
500 -0.0557 -0.0455 -0.5367 -0.2090 -0.8465
600 -0.0447 -0.0367 -0.4307 -0.1671 -0.6663

- 700 -0.0368 -0.0303 -0.3544 -0.1371 -0.5401
800 - -0.0255 -0.2473 -0.1148 -0.4479
900 e -0.0218 -0.2534 -0.0977 -0.3784
1000 e -0.2087 -0.0796 -0.3245
1500 e e et e -0.1762
2000 e S T — -0.1123

B, *(u indpix G anis) = -f‘;_(% € 0 <Iih...O-N)
T T

B,"(6,indjx Ceani) = - 144 (023 Co ) o " Tygt ...
3885 T T
9-0)

*2
*sh - 3% 192 D6 34 D
an (shape) ——75 &)k +—133 ']'_’(—'I’ )2122 —105 (-TT)ZIZH'
O-p

Results and Discussion
The dimensionless integrals In(T*) that appear in

the expressions for the various contributions to Bm'
are defined as

L) =02 0k ] ]~ L Gu exp(/TY  (10)
. xl'l—

113

where x=r/m and Uo* X)=Uo /e. The form chosen
for U, is the HFD-C potential used by Aziz and Chen
[3]. Values of I (T*) were calculated by numerical in-
tegration and are given in Table I, for 0.5<T*<10 and
0<n<30. The nonspherical contribution, B, (T), can be
obtained by Equations 8-9. The numerical values of
B _,(T) for ten gases are given in Table II. Notice that
all the values B .(T) are small with respect to the val-
ues of B _(T).

By subtraction of the calculated B_(T) from the
experimental values of B(T) and reduction with ¢ and
g, the functional B_*(T") is obtained. Selected experi-
mental data are taken from the critical survey of
Dymond and Smith [9]. In this work, the functional
Bo'(T') is assumed to have the same form as that of the
noble gases [10], but obviously the numerical values
of its coefficients differ. According to previous works,

the reduced functional B_*(T*) for the noble gases and
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Table IL. Continued
T
CH, CH, Cs, co, CH,

Kor°C

250K -1.9178 0.1393 -19.0566 35.6454 -84.2375

300 -1.2171 0.0886 -10.3537 22.8867 57.5663

0°C -1.5323 0.1115 -14.0675 -28.6559 -69.6691

20 -1.2874 0.0037 -11.1508 24.1762 -60.2819

40 -1.0979 -0.0800 9.4138 -20.6910 529234

60 -0.9483 0.0692 14715 -17.9254 -47.0301

80 0.8281 0.0605 -6.2746 -15.6932 422225

100 0.7301 0.0533 5.3426 -13.8648 -38.2384

150 0.5514 0.0404 3.7539 -10.5128 -30.7781

200 0.4328 0.0318 2.7850 8.2742 25.6247

250 0.3499 0.0257 -2.1520 -6.7016 21.0756

300 -0.2895 0.0213 -1.7161 55522 -19.0373

350 0.2441 0.0180 -1.4032 -4.6851 -16.8199

400 -0.2090 0.0154 -1.1708 4.0136 -15.0433

450 0.1813 0.0134 -0.9934 -3.4823 -13.5898

500 -0.1590 0.0118 0.8548 3.0541 123796

600 0.1256 -0.0093 0.6548 -2.4126 -10.4825

700 0.1021 0.0076 0.5199 -1.9608 9.0650

800 0.0850 -0.0063 0.4243 -1.6296 -7.9670

900 -0.0720 0.0054 0.3539 -1.3790 7.0920

1000 0.0618 -0.0046 -0.3004 -1.1843 -6.3785

1500 0.0339 -0.0026 0.1584 0.6451 -4.1684

2000 -0.0270 0.0017 -0.0999 0.4119 3.0280
6

®
5 P Michels (1935)
_ﬁ + Cottrell (1956)
i * Mac Cormak (1950)
W Huff (1963)
4 x Butcher (1964)
X Bose (1970)
. X
X TR x
3 X X [ ] ¥
X "
2 ®
n
&<
. -
1 <0 ey .
X

0 . B o

Figure I. Deviation plot for the second virial coefficient of CO,. Selected
experimental data are taken from Ref. 9.
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+ _
o, T
0
100 200 300 400 500
Temperature K
Figure II. Deviation plot for the second virial coefficient of CS,. Selected
experimental data are taken from Ref. 9.
3.5
. "
3 + ¥ Gomowski (1947)
+ v + Francis (1952)
. W * Waelbroek (1955)
X B Bottomley (1958)
2.5 v x Cox (1960)
w @ Zaalishvili (1965)
+ M AKroebel (1968)
5 v X Eon (1971)
S ¥, g v 89Al-Bizreh (1977)
5 . gl
< E
1.5 = .
3 X % XJ‘r o
A X
1
A
0.5 ' m’. © Ew
) : W X
L
]
0
200 300 400 500 600 700
Temperature K

Figure IIL. Deviation plot for the second virial coefficient of C/H,.
Selected experimental data are taken from Ref. 9.
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Table III. Coefficients of Equation (11) for computation of the functional B 0‘.

c, C, c, c, C,
CO, 0.77088 -0.62868 -1.76645 2.65872 -1.02333
CS, 0.51066 -1.62814 6.86488 37.87559 61.93789
CH, 1.32777 -2.63948 2.67594 -1.92352 0.85792
for several polyatomic gases in the region 1<T*<10 is Acknowledgements

in the form

B,"(T")= -T"e"T*[Cy#C InT*+C,(InT")2+C,(InT )+
C,(nT")*]. (11)

Comparison of the new correlation with an earlier
correlation shows that the correlation equations of the
functionals B_'(T*), obtained in this work, are very
close to those in the previous correlation equations,
except for CO, because the quadrupole-quadrupole in-
teractions are not negligible in this molecule. A new
correlation equation for CO, is obtained and the corre-
lation equations for CS, and C¢Hy, which heretofore
have not been reported, are also calculated. The coef-
ficients C_ of Equation 11 for the computation of Bo'

of CO,, CS, and C,H, are given in Table IIl. The
calculated second virial coefficients are compared in
Figures I-III with experimental data.
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