THE DERIVED GROUP OF A SEIFERT FIBRE GROUP

A. B. Mamaghani

Department of Mathematics, University of Orumia, Orumia, Islamic Republic of Iran

Abstract

Every Seifert Fibre Group is the lift of a Fuchsian group to the universal covering group of PSL $(2,\mathbf{R})$. From this, we work out a form of presentation for such a group. With the calculation of the Euler number, we can establish the presentation of the derived group of a Seifert Fibre Group.

Introduction (§ 1)

In [6] Milnor showed that the fundamental group of a 3-dimensional Brieskorn Manifold M(p,q,r) is the derived group of the lift of the triangle group T(p,q,r) to the universal covering group \tilde{G} of the group G=PSL(2,R). A paper was issued on Fuchsian groups by A. M. MacBeath in 1965, [4], and under his supervision this author carried out further research on the subject as a background to the present work. Now, in this paper, the more general problem of finding the derived groups of lifts of Fuchsian groups Γ to \tilde{G} is considered and is presented as an original work. The lift of a Fuchsian group Γ is a discrete subgroup $\tilde{\Gamma}$ of \tilde{G} and is isomorphic to the fundamental group of $\tilde{G}/\tilde{\Gamma}$ which is a Seifert Fibre Space. For this reason we call the groups $\tilde{\Gamma}$ the Seifert Fibre Groups (SF-GPs).

Since Γ is acting on the upper half-plane $H^2 = \{z \in \mathbb{C}: \text{Im } (z) > 0\}$, it will be called **co-compact** if H^2/Γ is compact. With these hypotheses we start our work in section 2 by calculating the presentation of Γ' the derived group of a Fuchsian group Γ . Prior to the work we recall that:

1.1 Every finitely generated Fuchsian group Γ has a presentation of the following form:

generators:
$$a_1,b_1,a_2,b_2,...,a_g,b_g; x_1,x_2,...,x_r; p_1, p_2, ..., p_s; h_1,h_2,..., h_t;$$
 and

Keywords: Seifert Fibre Groups

relations:
$$x_i^{m_i} = 1$$
, $i = 1,2,..., r$;

$$\Pi_{i=1}^{r} x_{i} \Pi_{i=1}^{g} [a_{i}, b_{j}] \Pi_{k=1}^{s} p_{k} \Pi_{l=1}^{t} h_{l} = 1;$$

where $[a_j, b_j] = a_j b_j a_j^{-1} b_j^{-1}$; integers $m_i \ge 2$ called **periods of** Γ ; and the integer $g \ge 0$ the **genus of** Γ .

In the case of Γ a co-compact Fuchsian group we get s=t=0.

1.2 A group H is called a Seifert Fibre Group if it admits at least one presentation of the following form:

generators:
$$\xi_1, \xi_2, ..., \xi_r; \alpha_1, \beta_1, \alpha_2, \beta_2, ..., \alpha_g, \beta_g; \zeta$$
;

relations:
$$\xi_{i}^{m_{i}} = \zeta^{q_{i}}, i = 1, 2, ..., r$$
;

$$\Pi_{i=1}^r\xi_i\Pi_{j=1}^g[\alpha_j,\beta_j]=\zeta^{q_0}\,;$$

ζ commutes with every element;

where q_i also q_o are integers. We will call the second relation the **long** relation, and all the others the **short** relations.

The Derived Group of a Co-Compact Fuchsian Group (§ 2)

Let Γ be a co-compact Fuchsian group with

signature (0; m₁, m₂,...,m_r) and let

$$G = \langle s_i : m_i s_i = 0, i=1,2,...,r \text{ and } \sum_{i=1}^r s_i = 0 \rangle$$

be the additive group isomorphic to the abelian group Γ / Γ '. By (p,q) and [p,q] we mean the greatest common divisor (g.c.d.) and least common multiple (l.c.m.) of p and q, respectively, then we have the following:

2.1 Theorem

(a) If s_i for each $i \in \{1,2,...,r\}$ has order l_i then

$$l_i = (m_i, [m_1, m_2, ..., m_{i-1}, m_{i+1}, ..., m_r]).$$

(b) If the index of Γ' is k then

$$k = g.c.d. \{\frac{m}{m_1}, \frac{m}{m_2}, ..., \frac{m}{m_r}\},$$

where $m = m_1 m_2 \dots m_r$.

Proof of (a)

Suppose ϕ is the natural homomorphism $\phi: \Gamma \to \Gamma/\Gamma'$ defined by $\phi(x_i) = s_i$, i=1,2,...,r then

 $1_i \mid m_i \text{ for every } i \in \{1, 2, ..., r\},$

and from the operation of ϕ on the relation $\prod_{i=1}^{r} x_i = 1$ we get

$$s = s_r^{-1} \dots s_{i+1}^{-1} s_{i-1}^{-1} \dots s_1^{-1}$$
 for each i.

Let us denote $[m_1, m_2, ..., m_{i-1}, m_{i+1}, ..., m_r]$ by $[\hat{m}_i]$ then

thus $l_i \mid [\hat{m}_i]$ for all i,

hence $l_i \mid (m_i, [\hat{m}_i])$ for all $i \in \{1, 2, ..., r\}$

Next consider a cyclic group $\langle z \rangle$, say of order p^h for p any prime number and h chosen a follows:

For each i, let hi be the greatest number such that

 $p^{h_i|m_i}$ but $p^{h_{i+1}} + m_i$. Denote by h_{ji} the maximum of $\{h_1,...,h_{i-1},h_{i+1},...,h_r\}$, then h is taken to be the maximum of $\{h_i,h_{ii}\}$.

Thus $p^h \mid (m_i, [\hat{m}_i])$ but $p^h \mid (m_{i+1}, [\hat{m}_{i+1}])$. A homomorphism $\psi \colon \Gamma \to \langle z \rangle$ defined by

$$\psi(\mathbf{x}_i) = \mathbf{z},$$

$$\psi(\mathbf{x}_j) = \mathbf{z}^{-1}, \ \mathbf{j} \neq \mathbf{i} \text{ and }$$

$$\psi(\mathbf{x}_v) = 1 \text{ for } v \neq \mathbf{i}, \ \mathbf{j},$$

ensures that $\Gamma \supset \ker \psi \supset \Gamma'$.

Thus ψ is a homomorphic map from Γ onto the abelian group $\langle z \rangle$ with $\psi(x_i)$ of order p^h . Then l_i (the order of s_i) is divisible by p^h , i.e. $p^h \mid l_i$, hence $(m_i, [\hat{m}_i]) \mid l_i \dots \infty$

The relations ⊕ and ⊗ together imply that

$$/ l_i = (m_i, [\hat{m}_i])$$
 for each i.

Proof of (b)

We proceed by calculating the order of the additive group G mentioned above. Since the group G is isomorphic to the direct sum of the groups $Z_{d_1}, Z_{d_2}, ..., Z_{d_r}$ where d_i are the elementary divisors of the matrix

then we can calculate the greatest common divisor of $r \times r$ minors to get the order of G. A straightforward calculation of d_i for each i leads us to the relation $d_1d_2...d_r = g.c.d.$ { $m_1m_2...m_{i-1}m_{i+1}...m_r$, i = 1,2,...,r} as the order of G, and it is obvious that

g. c. d.
$$\{m_1...m_{i-1}m_{i+1}...m_r, i = 1,2,...,r\} = g. c. d.$$
 $\{\frac{m}{m_1}, \frac{m}{m_2}, ..., \frac{m}{m_r}\}$

and thus
$$k = \text{order of } G = (\frac{m}{m_1}, \frac{m}{m_2}, \dots, \frac{m}{m_r})$$
.

Moreover, $k = \frac{m}{[m_1, m_2, ..., m_r]}$ which we will use later on.

2.2 Splitting of the Stabilizer Classes of a Co-Compact Fuchsian Group

Let Γ be a co-compact Fuchsian group, then for each element x of finite order there is a unique maximal finite cyclic subgroup $C_{\Gamma}(x)$ - the centralizer of x in Γ . Since the **periods** m_i of Γ are the orders of $C_{\Gamma}(x)$, and the latter fall in finitely many conjugacy classes called **stabilizer classes**, then they are finitely many. In fact, with presentation 1.1 they are just r numbers.

Now let $\Gamma_1 < \Gamma$ have finite index. Thus by the above argument, if C is a stabilizer class in Γ and <x> a subgroup of C then <x> \cap Γ_1 is either the trivial subgroup or a maximal finite cyclic subgroup of Γ_1 . By the non-trivial intersection, we obtain the stabilizer class

$$(\langle x \rangle \cap \Gamma_1)^{\Gamma_1} \text{ in } \Gamma_1$$
.

and hence the family

$$S_p(C) = \{(< x > \cap \Gamma_1)^{\Gamma_1}, < x > \in C : < x > \cap \Gamma_1 \neq \{1\} \} \text{ of them}$$

The following theorem is proved by D. Singerman (see [7]):

2.2.1 Singerman's Theorem

Suppose that the cycle lengths of the permutation $\theta(x)$ are

$$1_1 \le 1_2 \le ... \le 1_s < m = 1_{s+1} = 1_{s+2} = ... = 1_{s+t}$$

where m is the order of x. Then S_p (c) consists of s stabilizer classes of periods $\frac{m}{1_1}, \frac{m}{1_2}, \dots, \frac{m}{1_s}$.

Using Singerman's theorem in the special case that Γ_1 is a normal subgroup of finite index k in the cocompact group Γ , we get the following corollary:

2.2.2 Corollary

With the above-mentioned hypothesis and d_i the order of x_i , each stabilizer class S_p (C_i) is either

empty or consists of k/d_i classes each of period m_i/d_i .

Proof

Establishing S_p (C) for each $i \in \{1,2,...,r\}$ ensures that the period class $C_i = \langle x_i \rangle^{\Gamma}$ splits in Γ_1 into S_p (C_i) and the number of classes as well as their periods can be calculated. All these splittings are disjoint and their union equals the complete set of stabilizer classes in Γ_1 . Γ_1 being a normal subgroup implies that the permutations θ (x_i) are just left translations in the factor group Γ / Γ_1 , so that if $x_i\Gamma_1$ has order d_i not equal to m_i , S_p (C_i) consists of k/d_i classes each of period m_i/d_i , and it is empty if $d_i = m_i$.

Next we consider the commutator subgroup Γ' in the place of Γ_1 whence we will have k/l_i classes of periods m_i/l_i . Denote these by k_i and n_i , respectively, for the ease of usage. To find the genus g of Γ' , we use the **Euler characteristic** χ (Γ) given as:

$$\chi(\Gamma) = 2-2_g - \sum_{i=1}^r (1 - \frac{1}{m_i})$$

for any co-compact Fuchsian group Γ with signature $(g; m_1, m_2, ..., m_r)$ as well as the **Riemann-Hurwitz** formula

$$\chi(\Gamma_1) = k\chi(\Gamma)$$

where Γ_1 is a subgroup of finite index k in Γ . Thus we obtain

$$2-2g - \sum_{i=1}^{r} k_{i} (1 - \frac{1}{n_{i}}) = k \left[2 - 0 - \sum_{i=1}^{r} (1 - \frac{1}{m_{i}}) \right],$$

and by substituting the values of k_i , n_i , 1_i , and k meanwhile denoting l.c.m. $\{m_1, m_2, ..., m_r\}$ by c, and

$$\frac{\mathbf{m}_i}{\mathbf{c}}$$
 [^m]. by λ_i , we find:

$$g = 1 - \frac{m}{2c} (2 - r + \sum_{i=1}^{r} \frac{1}{\lambda_i}).$$

Hence we have

$$\Gamma = \langle t_{11}, ..., t_{1k_1}; t_{21}, ..., t_{2k_2}; ...; t_{r1}, ..., t_{rk};$$

$$a_1, b_1, a_2b_2, ..., a_g, b_g;$$

$$t_i^{n_i} = 1, i = 1, 2, ..., r, j = 1, 2, ..., k_i, \text{ and}$$

$$\prod_{i=1}^{r} \prod_{i=1}^{g} \prod_{\nu=1}^{g} [a_{\nu}, b_{\nu}] = 1 > .$$

$$j=12...k_{i}$$

The SF-GP Γ (§3)

Let G be the group PSL (2,R) and $p: G \rightarrow G$ the natural projection map from the universal covering space \widetilde{G} onto G. Now every transformation of G can be written uniquely in the form TR where R is an elliptic transformation fixing i and T which is defined by:

$$T(z) = az + b$$
, $a,b \in R$, $a > 0$.

Thus G is homeomorphic to $R^2 \times S^1$ and so $\pi_1(G) \cong \pi_1(S^1) \cong Z$ giving a short exact sequence

$$\{1\} \rightarrow Z \rightarrow \widetilde{G} \stackrel{p}{\rightarrow} G \rightarrow \{1\}$$

where $z = \ker p$ is central in G. (See Hilton-Wylie [3] p. 268). If ζ denotes a generator of Z then ζ is represented by a homotopy class of paths $f:I \to G$ which we suppose is given by

$$f(t) = \begin{bmatrix} \cos \pi t \sin \pi t \\ -\sin \pi t \cos \pi t \end{bmatrix}$$

Denoting the inverse image of Γ under the map p by $\tilde{\Gamma}$ we also have a short exact sequence

$$\{1\} \rightarrow Z \rightarrow \widetilde{\Gamma} \xrightarrow{P} \Gamma \rightarrow \{1\}$$

with Z again generated by ζ as above.

We now choose generators $\xi_i \in p^{-1}(x_i)$ for $\tilde{\Gamma}$. First of all, each x_i is represented by a matrix of the form $T_i M_i T_i^{-1}$ where $T_i \in SL(2,R)$ and

$$\mathbf{M}_{i} = \begin{bmatrix} \cos \frac{\pi}{m_{i}} & +\sin \frac{\pi}{m_{i}} \\ \pm \sin \frac{\pi}{m_{i}} & \cos \frac{\pi}{m_{i}} \end{bmatrix}, i = 1, 2, ..., r.$$

There are two choices of signs for the top right and bottom left elements, and the same signs chosen for i = 1,2,..., r. This choice of signs corresponds to choosing x_i as clockwise or anti-clockwise rotations. However, Γ is isomorphic to a subgroup of index 2 in

a group Γ_1 which contains orientation-reversing transformations (see Singerman [9]), so there is an automorphism of Γ induced by an orientation-reversing homeomorphism of H^2 . Replacing the x_i by their images under this automorphism and, if necessary, we may assume that we have the + sign in the top right-hand corner of the matrix M_i , we choose ξ_i equal to the homotopy class of $[g_i]$ in \tilde{G} where g_i is the path defined by

$$g_i(t) = T_i f\left(\frac{t}{m_i}\right) T_i^{-1}$$

for f as above. As G is path-connected, then any path f_1 defined by

$$f_1(t) = T_i f(t) T_i^{-1}$$
 for all i,

is homotoic to f, hence we have

$$\xi_i^{\mathbf{m}_i} = [\mathbf{f}_1] = \zeta.$$

From the relation $\prod_{i=1}^{r} x_i = 1$ we can deduce that

$$\xi_1\xi_2...\xi_r = \zeta^l$$

where l is an integer and is calculated as follows:

For the rotations x_i , i = 1,2,..., r with a fixed orientation choose a fixed point z in H^2 and denote by $r_z(\theta)$ the rotation through an angle θ about the point z for any real number θ . This leads to a homomorphism

$$r_z: R \to G$$

which is clearly lifted to a unique homomorphism

$$\tilde{\mathbf{r}}_z : \mathbf{R} \to \tilde{\mathbf{G}}$$

since r_z (2π) is identity then its lift $\tilde{r}_z(2\pi)$ belongs to the central subgroup C of \tilde{G} . Thus we can suppose that $\tilde{r}_z(2\pi) = \zeta$ is the generating element of the cyclic group C. This element is continuously dependent on z hence independent of choice of it. So the generators x_i of Γ are

$$x_i = r_{v_i} (2 \frac{\pi}{m_i}), i = 1, 2, ..., r$$

where v_i are the vertices of a convex r-sided

polygon A with interior angles $\alpha_i = \frac{\pi}{m_i}$. A is a fundamental domain for the group Γ_1 of isometries of H^2 which is generated by reflections σ_i , i=1,2,...,r in the edges of A. Since $m_i \geq 2$ then $0 < \alpha_i < \pi$ and we have

$$\sigma_i^2 = 1$$
,

therefore $(\sigma_1 \ \sigma_2) \ (\sigma_2 \sigma_3) \ ... \ (\sigma_{r-1} \sigma_r) \ (\sigma_r \sigma_1) = 1$.

Lifting each rotation $\sigma_i \sigma_{i+1} = r_{v_i}$ $(2\alpha_i) \in G$ to the element $\xi_i = \tilde{r}_{v_i}(2\alpha_i) \in \tilde{G}$ implies that $\Pi_{i=1}^r \xi_i$ belongs to C. Now if A varies continuously then $\Pi_{i=1}^r \xi_i$ will vary continuously. But C is a discrete group, so it implies that $\Pi_{i=1}^r \xi_i$ remains constant. In particular we shrink A towards the point z such that angles a_i tend towards angles β_i of some Euclidean r-sided polygon. Thus, $\xi_i = \tilde{r}_{v_i}(2\alpha_i)$ tends to the limit $\tilde{r}_z(2\beta_i)$ for each i, while $\Pi_{i=1}^r \xi_i$ tends to the product $\tilde{r}_z(2\beta_1 + 2\beta_2 + ... + 2\beta_r)$. Since $\Pi_{i=1}^r \xi_i$ is constant and $\sum_{i=1}^r \beta_i = (r-2)\pi$ in Euclidean polygon, then

$$\Pi_{i=1}^{r} \xi_{i} = \widetilde{r}_{2}((r-2) 2\pi) = \zeta^{r-2}.$$

Hence we get the following presentation for $\tilde{\Gamma}$:

generators:
$$\xi_1$$
, ξ_2 ,..., ξ_r ; ζ , and

relations: $\xi_i^{m_i} = \zeta$, i = 1,2,...,r;

$$\prod_{i=1}^r \xi_i = \zeta^{r-2}; \zeta \xi_i \zeta^{-1} = \xi_i, \forall i.$$

Let us verify the property of the map p on cocompact groups of any genus:

3.1 Corollary

If Γ and Γ_1 are isomorphic co-compact Fuchsian groups then they have isomorphic inverse images under the map p, i.e.

$$p^{\text{-}1}(\Gamma)\!\cong\!p^{\text{-}1}(\Gamma_1).$$

Proof

Let R_o (Γ ,G) denote the space of monomorphisms $r: \Gamma \to G$ such that r (Γ) is a co-compact Fuchsian group. R_o (Γ ,G) is topologized as a subgroup of $G^{(\Gamma)}$ and it is known that it consists of the union of two disjoint connected manifolds R_o^+ (Γ ,G) and R_o^- (Γ ,G),

where R_o^+ (Γ , \mathfrak{G}) is the group of all isomorphisms which can be induced by orientation-preserving homeomorphisms of H^2 including the inclusion map i : $\Gamma \subset G$. (See MacBeath and Singerman [5] for more details and terminology). Γ_1 being isomorphic to Γ means that there is a map $r_1 \in R_o^+$ (Γ ,G) such that $r_1(\Gamma) = \Gamma_1$. Define a path of monomorphisms r_t for $0 < \infty$ t < 1 with initial point $r_o = i$ and end point r_1 , and set r_t $(x_i) = x_i(t)$, $r_t(a_i) = a_i(t)$, $r_t(b_i) = b_i(t)$ for i = 1,2,...,rand j = 1,2,..., g. These can be uniquely lifted to $\xi_i(t)$, α_i (t), and β_i (t) in the universal covering group \hat{G} respectively, so the initial points $\xi_i(0) = \xi_i$, $\alpha_i(0) =$ α_i , and β_i (0) = β_i are determined. Now we deduce that for the relations defining Γ and therefore $r_t(\Gamma)$ for each t, there are integers $q_o(t)$, $q_1(t)$,..., $q_r(t)$ such that the following holds:

$$(\xi_i(t))^{m_i} = \zeta^{q_i(t)}$$
, $i = 1,2,...,r$, and

$$\prod_{i=1}^{r} \xi_{i}(t) \prod_{j=1}^{g} [\alpha_{j}, \beta_{j}] = \zeta^{q_{o}(t)}$$

Since q_i (t) above are continuous functions of t with integer values then they are constants and $q_i(1) = q_i(0)$ for all i, thus they establish the isomorphism between $p^{-1}(\Gamma)$ and $p^{-1}(\Gamma_1)$.

Presentation of $p^{-1}(\Gamma')$ (§4)

Suppose ϕ is the natural homomorphism which takes Γ of genus zero onto Γ/Γ' . Then the composition map ϕ^o p will take $\widetilde{\Gamma}$ onto Γ/Γ' , thus p⁻¹ (Γ') will be a centrally extended group of Γ' hence it will have a presentation of the following form:

generators:
$$\tau_{ij}$$
 , $i=1,2,...,r$, $j=1,2,...,k_i$;
$$\alpha_v$$
 , β_v , $\nu=1,2,...,g$;
$$\zeta$$
 ; and

relations:
$$\tau_{ij}^{n_i} = \zeta$$
,

$$\prod_{\substack{i=1\\j=1,2,...,k_i}}^r \tau_{ij} \prod_{\nu=1}^g [\alpha_{\nu}, \beta_{\nu}] = \zeta^L,$$

and ζ commutes with every element;

where each one of the generators is chosen in the inverse image of corresponding elements of Γ' under the map p and we have:

$$p(\tau_{ij}) = t_{ij}$$
, $i = 1,2,..., r$, $j = 1,2,..., k_i$,

p (
$$\alpha_{\nu}$$
) = a_{ν} , p (β_{ν}) = b_{ν} , ν = 1,2,..., g, and p (ζ) = 1.

We wish to calculate the integer L. First we give some definitions and a theorem. If a group H with the following presentation:

generators:
$$\xi_i$$
, α_j , β_j , ζ , $i=1,2,...,$ r, $j=1,2,...,$ g; relations: $\xi_i^{m_i} = \zeta^{q_i}$,

$$\prod_{i=1}^{r} \xi_i \prod_{j=1}^{g} [\alpha_j, \beta_j] = \zeta^{q_p}$$
, and ζ commutes with every element,

becomes a Fuchsian group when we factor out its centre $<\zeta>$, then the rational number $\left|q_o-\sum_{i=1}^r\frac{q_i}{m_i}\right|$ is called the **Euler number** of the group H and is denoted by **e(H)**. Bailey proved that this number is an invariant characteristic of a SF-GP up to isomorphism (see [1]).

4.1 Theorem

If Γ is co-compact Fuchsian group then

$$e\left(p^{-1}(\Gamma)\right) = -\chi\left(\Gamma\right)$$

where p is the projection map.

Proof

Let Γ have the following presentation:

generators:
$$x_i$$
, $i = 1,2,..., r$,

$$a_j$$
, b_j , $j = 1,2,..., g$; and

relations: $x_i^{m_i} = 1$,

$$\prod_{i=1}^{r} \mathbf{x}_{i} \prod_{j=1}^{g} [\mathbf{a}_{j}, b_{j}] = 1.$$

We give the complete proof by splitting it into three cases:

Case 1: Γ has genus zero. Then its Euler characteristic χ (Γ) is 2- $\sum_{i=1}^{r} (1 - \frac{1}{m_i})$ by definition, and from the presentation of $\tilde{\Gamma} = p^{-1}$ (Γ), as obtained in section 3, we get $e(p^{-1}(\Gamma)) = -2 + r - \sum_{i=1}^{r} \frac{1}{m_i}$ and hence the

relation

$$e(p^{-1}(\Gamma)) = -\chi(\Gamma)$$

holds.

Case 2: Γ has genus $g \ge 1$ and every period m_i has even multiplicity. We can suppose that Γ has period partition $(m_1, m_1, m_2, m_2, ..., m_r, m_r)$. Let Γ_2 be a group with genus zero and 2g + 2 + r stabilizer classes such that 2g + 2 classes have period 2, and r classes have periods $m_1, m_2, ..., m_r$. Then by calculating in the same way as in section 3, we find that $p^{-1}(\Gamma_2)$ has a presentation of the following form:

generators: $\lambda_1, \lambda_2, ..., \lambda_{2g+2}, \xi_1, \xi_2, ..., \xi_r$, ζ , and

relations:
$$\lambda_i^2 = \xi_j^{m_j} = \zeta$$
,

$$\prod_{i=1}^{2g+2} \lambda_i \prod_{j=1}^r \xi_j = \zeta^{2g+r}$$
.

Define a homomorphism $\psi: p^{-1}(\Gamma_2) \to \mathbb{Z}_2$ by

$$\psi(\lambda_i) = 1 \pmod{2}$$
, for all i, and

$$\psi(\xi_j) = \psi(\zeta) = 0 \pmod{2}$$
, for all j.

Since $\zeta \in \ker \psi$, then there is a map $\psi^*: \Gamma_2 \to Z_2$ such that:

$$\psi = \psi^* \circ p$$
.

Denote ker ψ^* by Γ_3 . By corollary 2.2.2, each stabilizer class of $\langle p(\xi_j) \rangle^{\Gamma_2}$ in Γ_2 splits into two stabilizer classes in Γ_3 each of period m_j , but the stabilizer classes $\langle p(\lambda_i) \rangle$ in Γ_2 do not make any change in the period partition of Γ_3 . So by the Riemann-Hurwitz formula we get the genus of Γ_3 equal to g, and hence we get $\Gamma_3 \cong \Gamma$ and by corollary 3.1, p^{-1} (Γ) is isomorphic to p^{-1} (Γ_3) = p^{-1} (ker ψ^*) which is just ker ψ .

Now we calculate the ker ψ from the presentation of $p^{-1}(\Gamma_2)$. Set:

$$\lambda_1^2 = \lambda', \lambda_1 \lambda_i = \rho_i$$
, $\lambda_i \lambda_1^{-1} = \gamma_i$ for $i = 2,3,...,2g+2$, and $\lambda_1 \xi_j \lambda_1^{-1} = \xi_j'$ for $j = 1,2,...,r$,

then we get

$$\lambda' = \zeta, \gamma_i = \rho_i^{-1} \zeta, \xi_i^{m_j} = \xi'_i^{m_j} = \zeta,$$

from the short relations, and

$$\rho_2 \gamma_3 \rho_4 \gamma_5 \dots \rho_{2g} \gamma_{2g+1} \rho_{2g+2} \xi_1 \xi_2 \dots \xi_r = \zeta^{2g+r} ,$$

$$\lambda' \gamma_2 \rho_3 \gamma_4 \dots \rho_{2g+1} \gamma_{2g+2} \xi'_1 \xi'_2 \dots \xi'_r = \zeta^{2g+r}$$
,

from the long relation and its λ_1 -conjugate.

By the above short relations, we can eliminate λ' , $\gamma_1, \gamma_2, ..., \gamma_{2g+2}$ from those long relations, and get

$$\rho_2 \rho_3^{-1} \dots \rho_{2g+1}^{-1} \rho_{2g+2} \, \xi_1 \, \xi_2 \dots \xi_r = \zeta^{g+r}$$
,

$$\rho_2^{-1}\rho_3 \dots \rho_{2g+1} \rho_{2g+2} \xi'_1 \xi'_2 \dots \xi'_r = \zeta^{g+r-2}$$
.

If we find the value of ρ_2 from the second relation and replace it in the first one, we obtain

$$\prod_{i=3}^{2g+2} \rho_i^{-\varepsilon_i} \prod_{j=1}^r \xi_j' \prod_{i=3}^{2g+2} \rho_i^{\varepsilon_i} \prod_{j=1}^r \xi_j = \zeta^{2g+2r-2}$$

where $\varepsilon_i = (-1)^i$. If we abelianize the group and denote the corresponding elements by a bar on top of them, we get the sum of two groups, one a free abelian group generated by ρ_3 , ρ_4 ,..., ρ_{2g+2} which has rank 2g, and the other a torsion subgroup with presentation:

generators:
$$\overline{\xi}_1, \overline{\xi}_2, ..., \overline{\xi}_n, \overline{\xi}_1', \overline{\xi}_2', ..., \overline{\xi}_r', \overline{\zeta}$$
, and

relations:
$$m_i \overline{\xi}_i = m_i \overline{\xi}_i' = \overline{\zeta}, i = 1, 2, ..., r$$
,

$$\sum_{i=1}^{r} (\overline{\xi}_{i} + \overline{\xi}'_{i}) = (2g + 2r - 2)\overline{\zeta}.$$

Then the abelianized group has the rank 2g and its torsion subgroup has the order of $m_1m_2...m_re$ (p⁻¹(Γ)), hence we get the result.

Case 3: Γ has genus $g \ge 1$ and periods $m_1, m_2, ..., m_r$. Denote this by Γ_4 , and define a map $\eta: \Gamma_4 \to Z_2$ by

$$\eta(a_1) = 1 \pmod{2},$$

 η (x) = 0 (mod 2) for x $\in \Gamma_4$, $x \neq a_1$ from presentation 1.1.

Then by Singerman's theorem and the Riemann-Hurwitz formula ker η , denoted by Γ_5 , has genus 2g-1

and period partition $(m_1, m_1, m_2, m_2, ..., m_r, m_r)$. So its Euler characteristic χ (Γ_5) is -4g - 2r + 4 +

$$2\sum_{\nu=1}^{r} \frac{1}{m_{\nu}}$$
 which, by Case 2, is equal to -e (p⁻¹(Γ_5)).

Seeing as $p^{-1}(\Gamma_5) = \ker (\eta \circ p)$, we can work out a presentation for it in the same way as that calculated for $p^{-1}(\Gamma)$ in section 3, thus we get the periods $m_1, m_1, m_2, m_2, ..., m_r$, m_r and an even power $2 \mid 1$, say, for the central element ζ in the long relation. Then with this integer $| 1 \rangle$, the Euler number is

$$e\left(p^{-1}(\Gamma_5)\right)=21-2\sum_{\nu=1}^{r}\frac{1}{m_{\nu}}$$
. Comparing the two values

of e $(p^{-1}(\Gamma_5))$ implies that t = 2g + r - 2. With this value of t we get

$$e\left(p^{-1}(\Gamma_4)\right) = -\chi\left(\Gamma_4\right).$$

Thus all three cases together ensure that the theorem is true for every co-compact Fuchsian group Γ .

Now with Theorem 4.1, we compare the Euler number of $p^{-1}(\Gamma')$, (with exponent L in the long relation)

$$e\left(\mathbf{p}^{-1}\left(\mathbf{\Gamma}'\right)\right) = \mathbf{L} - \sum_{i=1}^{r} \frac{k_i}{\mathbf{m}_i}$$

and the Euler characteristic of Γ from its presentation obtained in section 2,

$$\chi(\Gamma) = 2 - 2g - \sum_{i=1}^{r} k_i (1 - \frac{1}{m_i}),$$

and we get

$$L = 2g - 2 + \sum_{i=1}^{r} k_i$$
.

Hence we have

$$\begin{split} \mathbf{p}^{-1}(\Gamma') &= <\tau_{ij} \;,\; \mathbf{i} = 1,2,...,\; \mathbf{r},\; \mathbf{j} = 1,2,...,\; \mathbf{k}_i\;;\\ &\alpha_v \;,\; \boldsymbol{\beta}_v \;,\; v = 1,2,...,\; \mathbf{g}\;;\\ &\zeta\;;\\ &(\tau_{i\,j})^{\,\mathbf{n}_i} \! = \! \zeta\;,\\ &\prod_{\substack{i=1\\j=1,2,...,\mathbf{k}_i}}^r \tau_{i\,j} \prod_{\substack{v=1\\v=1}}^g [\alpha_v,\boldsymbol{\beta}_v] = \zeta^{2g-2+\sum_{i=1}^r \mathbf{k}_i} > . \end{split}$$

4.2 Theorem

Suppose H and H_1 are two SF-GPs where H_1 is a subgroup of H with finite index k and contains $<\zeta>$ the centre of H. If the natural homomorphism maps H_1 onto the quotient group $H/<\zeta>, then we get$

$$e(H_1) = k e(H).$$

Proof

In the proof of Theorem 4.1-Case 2, it was shown that the abelianized group, denoted by any letter S/S', has rank 2g if e (S) is not zero. At the same time, one could easily show that rank would be greater than 2g if e (S) were zero, whence it would be true for its subgroup $S_1/(S' \cap S_1)$, for S_1 a subgroup of finite index in S, with e (S_1) non-zero. So without loss of generality, we assume that the Euler numbers are non-zero.

Let the group H have the following presentation:

generators:
$$\xi_1, \xi_2, ..., \xi_r$$
; $\alpha_1, \beta_1, ..., \alpha_g, \beta_g, \zeta$,

relations:
$$\xi_i^{m_i} = \zeta^{q_i}$$
, $i=1,2,...,r$,
$$\Pi_{i=1}^r \xi_i \Pi_{\nu=1}^s [\alpha_{\nu},\beta_{\nu}] = \zeta^{q_{\circ}}$$
, and

 ζ commutes with every element.

Denote by Γ the Fuchsian projection (group) H / < ζ >. Let μ be any integer divisible by m_i for every i, and define the group H* by the following presentation:

generators:
$$\xi_1, \xi_2, ..., \xi_r$$
; $\alpha_1, \beta_1, ..., \alpha_g, \beta_g, \zeta$,

relations:
$$\xi_i^{\mathbf{m}_i} = \zeta^{\mu \mathbf{q}_i}$$
, $i = 1, 2, ..., r$,
$$\Pi_{i=1}^r \xi_i \Pi_{\nu=1}^g [\alpha_{\nu}, \beta_{\nu}] = \zeta^{\mu \mathbf{q}_o}$$
, and

 ζ commutes with every element.

This group has the same generators and relations of group H but only the central element ζ is replaced by ζ^{μ} , thus the groups H and p⁻¹ (Γ), for p the projection map, are subgroups of finite index in H* and the natural homomorphism maps both of them onto the quotient group H*/< ζ >. Let H₁* denote the inverse image of H₁/< ζ > under the natural map of H* onto Γ . If Γ_1 denotes the Fuchsian group H₁/< ζ >, then the groups H₁ and p⁻¹ (Γ_1) are subgroups of finite index in H₁*, and the natural homomorphism maps both of

them onto the quotient group $H_1*/<\zeta>$. Denote the index of H in H* by ρ , then the centre $<\zeta>$ of H has index ρ in the centre of H*. So there is an element ζ' in the centre of H* such that $\zeta'^\rho=\zeta$, hence H* has the presentation:

generators:
$$\xi_1, \xi_2, ..., \xi_r$$
; $\alpha_1, \beta_1, ..., \alpha_s, \beta_s, \zeta'$,

relations:
$$\xi_i^{m_i} = \zeta'^{\rho q_i}$$
, $i = 1,2,...,r$,
$$\Pi_{i=1}^r \xi_i \Pi_{v=1}^g [\alpha_v, \beta_v] = \zeta'^{\rho q_o}$$
, and

 ζ' commutes with every element.

Thus, we have

$$e(H^*) = \left| \rho q_o - \sum_{i=1}^r \frac{\rho q_i}{m_i} \right|$$

$$= p \left| q_o - \sum_{i=1}^r \frac{q_i}{m_i} \right|$$

$$= \rho e(H).$$

Similarly

$$e(H_1^*) = \rho e(H_1)$$
,

hence

$$e(H^*) e(H_1) = e(H_1^*) e(H)$$
.

The same argument applies to the groups H* , H1*, p-1 (Γ), and p-1 (Γ 1). Then we get

$$e(H^*) e(p^{-1}(\Gamma_1)) = e(H_1^*) e(p^{-1}(\Gamma)).$$

From these two relations we get

$$\frac{e(H_1)}{e(H)} = \frac{e(H_1^*)}{e(H^*)} = \frac{e(p^{-1}(\Gamma_1))}{e(p^{-1}(\Gamma))},$$

and by Theorem 4.1, the latter is equal to $\frac{-\chi(\Gamma_1)}{-\chi(\Gamma)}$ which is just k, the index of H_1 in H, by the Riemann-Hurwitz formula.

4.3 Presentation of the Derived Group $\widetilde{\Gamma}'$ of the SF-Group $\widetilde{\Gamma}$ -

Let τ_{ij} and τ'_{ij} be two distinct elements of the same i-th coset in the presentation of $p^{-1}(\Gamma')$. Then for each i there is an integer θ_i which establishes the relations

$$\tau'_{i,j} = \tau_{i,j} \zeta^{\theta_i}, j = 1,2,...,k_i$$
.

So, we get

$$(\tau'_{ij})^{n_i} = \tau_{ij}^{n_i} \zeta^{n_i \theta_i} = \zeta^{1 + n_i \theta_i},$$

hence

$$(\tau'_{ij})^{n_i} \in \widetilde{\Gamma}'$$
.

We have mentioned already that the composition map $\phi \circ p$ takes $\widetilde{\Gamma}$ onto the abelian group Γ/Γ' . Then the central element ζ will have the order \widetilde{k}/k in $\widetilde{\Gamma}/\widetilde{\Gamma}'$, where k is the order of Γ/Γ' and equals $\frac{m}{[m_1\,,m_2\,,...,m_r]}$

by Theorem 2.1-b and \tilde{k} is the order of $\tilde{\Gamma}/\tilde{\Gamma}'$ which equals the determinant of the following $(r+1)\times (r+1)$ matrix:

then

$$\tilde{\mathbf{k}} = \mathbf{m} \left\{ 2 - \mathbf{r} + \sum_{i=1}^{r} \frac{1}{\mathbf{m}_i} \right\}.$$

Let θ_o denote the number \tilde{k}/k , then we have

$$\theta_o = [m_1, m_2, ..., m_r] \{2 - r + \sum_{i=1}^r \frac{1}{m_i}\}$$

$$= \frac{\mathbf{m}_i \left[\hat{\mathbf{m}}_i \right]}{l_i} \quad (2 - \mathbf{r} - \frac{1}{\mathbf{m}_i} + \sum_{j=1}^r \frac{1}{\mathbf{m}_j}), j \neq i \text{ for each } i$$

$$\equiv \frac{-[\hat{\mathbf{m}}_i]}{l_i} \pmod{\mathbf{n}_i} ,$$

where = $[\hat{\mathbf{m}}_i]$ = $[\mathbf{m}_1, \mathbf{m}_2, ..., \mathbf{m}_{i-1}, \mathbf{m}_{i+1}, ..., \mathbf{m}_r]$, and $\mathbf{n}_i = \frac{\mathbf{m}_i}{I_i}$.

Theorem 2.1-a implies that $\frac{[\hat{\mathbf{m}}_i]}{l_i}$ and \mathbf{n}_i are relatively prime, then θ_o and \mathbf{n}_l are relatively prime for every i.

Hence we can choose θ_i in a way that we get

$$\theta_0 \mid 1 + n_i \theta_i$$
 for every i,

in other words, there are integers e; such that we have

$$e_i \theta_o = 1 + n_i \theta_i$$
.

Denote ζ^{θ_o} by $\bar{\zeta}$, then we get

$$(\tau'_{ij})^{\mathbf{n}_i} = (\tilde{\mathbf{Q}})^{\mathbf{e}_i}$$

and the following presentation for $\tilde{\Gamma}'$:

generators:
$$\tau'_{ij}$$
 , $i=1,2,...,r$, $j=1,2,...,k_i$;

$$\alpha_{v}$$
, β_{v} , $v = 1,2,...,g$;

relations:
$$(\tau'_{ij})^{n_i} = (\bar{\zeta})^{e_i}$$

$$\prod_{i=1}^{r} \tau'_{ij} \prod_{\nu=1}^{g} [\alpha_{\nu}, \beta_{\nu}] = (\bar{Q}^{e_o}, \text{ and } i=1,2,...,k_i)$$

 ζ commutes with all the elements, where e_o is some integer and is calculated as follows:

 $\widetilde{\Gamma}'$ is a subgroup of $\widetilde{\Gamma}$ and it has the conditions that the group H_1 had in Theorem 4.2 with respect to the group $\widetilde{\Gamma}$ in the place of the group H. Then we have

$$e(\widetilde{\Gamma}) = \widetilde{k} \left(e(\widetilde{\Gamma}) \right).$$

But.

$$e(\tilde{\Gamma}) = \theta_o e_o - \sum_{i=1}^r \frac{\theta_o e_i}{n_i}$$

from the above presentation of $\widetilde{\Gamma'}$ in terms of \boldsymbol{e}_o , and

$$e(\tilde{\Gamma}) = r - 2 - \sum_{i=1}^{r} \frac{1}{m_i}$$

from the presentation of $\tilde{\Gamma}$, section 3, and

$$\tilde{k} = m \{2 - r + \sum_{i=1}^{r} \frac{1}{m_i} \}.$$

So, by substituting these values in the above relation, we get

$$e_0 = \sum_{i=1}^r \frac{e_i}{n_i} - \frac{m}{[m_1, m_2, ..., m_r]} (2 - r + \sum_{i=1}^r \frac{1}{m_i}).$$

References

1. Bailey, G. O. Uncharacteristically Euler. PhD. Thesis,

- University of Birmingham, U. K., (1977).
- 2. Hartley, B. and Hawkes, T. O. Rings, modules, and linear algebra. Chapman and Hall, London, (1970).
- 3. Hilton, P. J. and Wylie, S. *Homology theory*. Cambridge University Press, (1960).
- 4. Macbeath, A. M. Fuchsian groups. Birmingham University, U. K., (1965).
- Macbeath, A. M. and Singerman, D. Spaces of Subgroups and Teichmuller Spaces. Proceedings of London Math. Soc., 31, 211-250, August (1975).
- Milnor, J. On the 3-dimensional Brieskorn Manifolds. Knots, Groups and 3-Manifolds By L. P. Neuwirth. Anals. of Maths. Studies, Princeton University Press, pp. 175-225, (1975).
- 7. Singerman, D. Subgroups of Fuchsian Groups and Finite Permutation Groups. Bulletin of London Maths. Soc., 2, 319-323, (1970).
- 8. Singerman, D. Finitely Maximal Fuchsian Groups. J. London Maths. Soc., 6, (2), 29-38, (1972).
- Singerman, D. On the Structure of Non-Euclidean Crystallographic Groups. Proc. Cambridge Phil. Soc., 76, 233-240, (1974).
- Weil, A. On Discrete Subgroups of Lie Groups I. Anals. of Maths., 72, 369-384, (1960).