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Abstract
Every Seifert Fibre Group is the lift of a Fuchsian group to the universal
covering group of PSL (2,R). From this, we work out a form of presentation for
such a group. With the calculation of the Euler number, we can establish the
presentation of the derived group of a Seifert Fibre Group.

Introduction (§ 1)

In [6] Milnor showed that the fundamental group
of a 3-dimensional Brieskorn Manifold M(p,q.r) is the
derived group of the lift of the triangle group T(p,q.r)
to the universal covering group G of the group G =
PSL (2, R). A paper was issued on Fuchsian groups by
A. M. MacBeath in 1965, [4], and under his
supervision this author carried out further research on
the subject as a background to the present work. Now,
in this paper, the more general problem of finding the
derived groups of lifts of Fuchsian groups T to G is
considered and is presented as an original work. The
lift of a Fuchsian group I is a discrete subgroup FofG
and is isomorphic to the fundamental group of G/T
which is a Seifert Fibre Space. For this reason we call
the groups [ the Seifert Fibre Groups (SF-GPs).

Since I' is acting on the upper half-plane H!={ze
C: Im (z) > 0}, it will be called co-compact if H*T is
compact. With these hypotheses we start our work in
section 2 by calculating the presentation of ' the
derived group of a Fuchsian group I'. Prior to the work
we recall that:

1.1 Every finitely generated Fuchsian group I" has a
presentation of the following form:

generators: aj,by,az,by,...,85,bg} X1,X2,0.,X5 P> P25 oo s
ps; hyhg,..., hy; and
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. mi_ ..
relations: x; '=1,i=12,..,1;

T x T8 faj, b1 Mie Pl hi=1;

where [a; , bj] = apa;lbj! ; integers m; > 2 called
periods of " ; and the integer g > 0 the genus of T.

In the case of I' a co-compact Fuchsian group we
get s=t=0.

1.2 A group H is called a Seifert Fibre Group if it
admits at least one presentation of the following form:

relations: & = ¥ i=12,..1;

rﬁ=1§injg=1[09'aﬂ] ={%;
{ commutes with every element;

where g; also q, are integers. We will call the second
relation the long relation, and all the others the short
relations.

The Derived Group of a Co-Compact Fuchsian
Group (§ 2)
Let T be a co-compact Fuchsian group with
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signature (0; m;, m,,....,m,) and let

G=< 8;:m;s; = 0,i=1,2,...r and T si=0>

be the additive group isomorphic to the abelian group
I / T’. By (p.q) and [p,q] we mean the greatest
common. divisor. (g.c.d.) and least common multiple

(l.c.m.) of p and q, respectively, then we have the
following:

2.1 Theorem
(a) If s; for each i € {1,2,...,r} has order 1 then

L = (my, [my,my, ... m;_j,my,q, ... m]).

(b) If the index of I"” is k then

k=gcd (&, 10, 0,
m ma m;

where m =mj;m;... m.

Proof of (a) .
Suppose ¢ is the natural homomorphism ¢ : I' —

/T defined by ¢ (x;) =s; , i=1,2,....,r then

1;Im;foreveryie {1,2,...r},

and from the operation of ¢ on the relation I, x;=1
we get

S TS T R | .
§=8, ...8;415;.;...5 foreachi.

Let us denote [my,my,...,mj_;,mj,,....,m,] by [m;]
then

m]  [m] m] [m] [m]
Si =(S1 81 Sigl w8 Yl=1,
thus 1, | [m;] for all i,
hence 1; | (m;, [m;]) for all i € {1,2,...,}......... &

Next consider a cyclic group < z >, say of order p*
for p any prime number and h chosen a follows:

For each i, let h; be the greatest number such that
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ph"lm,- but phe1 + m;. Denote by hy the maximum of
{hy,....,h; 1,0y, q....,h ), then h is taken to be the
maximum of { hi,hji‘}.

Thus p* I(m; , [m;]) but p* + (my,, * [Miyq]). A

- homomorphism y : I — < z > defined by

/

(m;, [m]) 1

'I’(Xi)=z,
v(x)=z1,j#iand
v(x,)=1forv=#i,j,

ensures that ' S ker y o I,
Thus y is a homomorphic map from I" onto the

abelian group < z > with y (x;) of order p”. Then I;
(the order of s;) is divisible by p*, i.e. p* 1 1;, hence

The relations ® and ® together imply that

{

/ 1; = (m; , [m]) for each i.

Proof of (b) ‘

We proceed by calculating the order of the additive
group G mentioned above. Since the group G is
isomorphic to the direct sum of the groups
Zs,Z4,. Za, Where d; are the elementary divisors of
the matrix

o -
m;
| 0 |, (see Hartley and Hawkes [2]),
0
m,
E N R

“then we can calculate the greatest common divisor of

1 X 1 minors to get the order of G. A straightforward

calculation of d; for each i leads us to the relation
dldz...d,= g.c.d. {mlmz...mi_lmi+1...m,, i=12,..r}as
the order of G, and it is obvious that

g c.d{mp.m mg.m,i=12..r}=gcd

m m m
(m m m,

104
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and thus k = order of G = (-—,-.-—, .,._.)
m m; m,

m
[mim2,...,m]

Moreover, k = which we will use later

on. A

2.2 Splitting of the Stabilizer Classes of a Co-
Compact Fuchsian Group

Let T be a co-compact Fuchsian group, then for
each element x of finite order there is a unique
maximal finite cyclic subgroup Cr (x) - the centralizer
of x in T. Since the periods m; of I" are the orders of
Cr (x), and the latter fall in finitely many conjugacy
classes called stabilizer classes, then they are finitely
many. In fact, with presentation 1.1 they are just r
numbers.

Now let I'; < I have finite index. Thus by the
above argument, if C is a stabilizer class in I' and <x>
a subgroup of C then <x> n T'y is either the trivial
subgroup or a maximal finite cyclic subgroup of I'y.
By the non-trivial intersection, we obtain the stabilizer
class

x>nMinly,

and hence the family

S,(O)={(<x>ATY,<x>eCi<x>NT={1} }of
them.
The following theorem is proved by D. Singerman
(see [TD:

2.2.1 Singerman’s Theorem
Suppose that the cycle lengths of the permutation
0(x) are

11 < 12S...S 1s<m= 1x+l = IS+2="'= 1s+t

where m is the order of x. Then S, (c) consists of s

stabilizer classes of periods — mmh. o

11 1o ls
Using Singerman’s theorem in the special case that I'y
is a normal subgroup of finite index k in the co-
compact group I', we get the following corollary:

2.2.2 Corollary
With the above-mentioned hypothesis and d; the
order of x; , each stabilizer class S, (C;) is either
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empty or consists of k/d; classes each of period m;/d;.

Proof

Establishing S, (C) for each i € {1,2,....r} ensures
that the period class C; = <xT splits in Ty into S,
(C;) and the number of classes as well as their penods
can be calculated. All these splittings are disjoint and
their union equals the complete set of stabilizer classes
in I'y. Ty being a normal subgroup implies that the
permutations 8 (x;) are just left translations in the
factor group I' / T'q, so that if x;I"; has order d; not
equal to m;, S, (C;) consists of k/d; classes each of
period m;/d; , and itisempty if d;=m;. A

Next we consider the commutator subgroup I'” in
the place of I'; whence we will have k/l; classes of
periods m;/l;. Denote these by k; and n; , respectively,
for the ease of usage. To find the genus g of I, we
use the Euler characteristic o (I') given as:

X (D)=224- Xy -1)
m;

for any co-compact Fuchsian group I" with signature
(g : my , my ..., m,) as well as the Riemann-Hurwitz
formula

x T =ky @)
where I'; is a subgroup of finite index k in I, Thus we
obtain
22g- 5 ki1- Ly=k2-0- 5_,a -1y,
m;

i

and by substituting the values of k; . n; ,
meanwhile denoting L.c.m. {m; , my ,...,m,

ll-,andk
} by ¢, and

m [Am}. by A; , we find:
c

ro1
=1--r+3_2).
g 2(:( 1M

Hence we have

r =<t 117“-at1k[ ;t2l 9»--9t2k2 ; [ ;tl'l seery trk,;

»al,bl,azbz,... s 8g, by

t;'=1i=12,..1j=1,2,..k, and



Vol. 6 No. 2
Spring 1995

T

g
I1 i=lt; ITiailav,byl=1>.
J=12,k

The SF-GP T (§3)

Let G be the group PSL (2,R) and p : G—G the
natural projection map from the universal covering
space G onto G. Now every transformation of G can
be written uniguely in the form TR where R is an
elliptic transformation fixing i and T which is defined
by:

T(z)=az+b, abeR,a>0.

Thus G is homeomorphic to R? x S! and so m;(G) =
n1(S1) = Z giving a short exact sequence

~ P
1} 2Z->5G->G—{1}

where z = ker p is central in G. (See Hilton-Wylie [3]
p. 268). If { denotes a generator of Z then { is
represented by a homotopy class of paths fiI-> G
which we suppose is given by

costt sinmt
f=)
-Sin 7t coswt

Denoting the inverse image of I" under the map p by I*
we also have a short exact sequence

~ P
{1}=Z->T>T—{1)

with Z again generated by { as above.

We now choose generators &; e p-l(x,) for I, First
of all, each x; is represented by a matrix of the form
TM;T; ! where T; € SL(2,R) and

cos L +sin Tt
m; m; |,
Mg= S1= 1,2,..., r.
+sin X cos
m; m;

There are two choices of signs for the top right and
bottom left elements, and the same signs chosen for
i = L2,.., r. This choice of signs corresponds to
choosing x; as clockwise or anti-clockwise rotations.
However, I is isomorphic to a subgroup of index 2 in
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a group I'y which contains orientation-reversing
transformations (see Singerman [9]), so there is an
automorphism of T induced by an orientation-
reversing homeomorphism of HZ, Replacing the x; by
their images under this automorphism and, if
necessary, we may assume that we have the + sign in
the top right-hand corner of the matrix M;, we choose
&; equal to the homotopy class of [g;] in G where g; is
the path defined by

gO=Tf()T
m;
for f as above. As. G is path-connected, then any path
f| defined by
Cf =T ) Ty forall i,

is homotoic to f, hence we have

&:niz fil= C,

From the relation IT._, x;= 1we can deduce that

£1€2.. 8=

where [ is an integer and is calculated as follows:

For the rotations x; , i = 1.2,..., r with a fixed
orientation choose a fixed point z in HZ and denote by
r, (6) the rotation through an angle @ about the point z
for any real number 8. This leads to a homomorphism

:R->G

which is clearly lifted to a unigue homomorphism

r,:R—-G,

since 1, (2n) is identity then its lift ;2(21:) belongs to
the central subgroup C of G. Thus we can suppose that
I (2m) = { is the generating element of the cyclic
group C. This element is continuously dependent on z
hence independent of choice of it. So the generators x;
of I" are

%=ty 2 1) ,i=12 .1
m;

where v; are the vertices of a convex r-sided -
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polygon A with interior angles o=

mx
fundamental domain for the group I'"; of isometries of
H? which is generated by reflections 6; , i = 1,2,...,r in
the edges of A. Since m; = 2 then 0 < o; < w and we
have

.Aids a

therefore (0, 65) (6,03) ... (6,.16,) (6,5)) = 1.

Lifting each rotation o;0isi=1, 20y € G to the
element §; =1, (20t) € G implies that I}, &; belongs
to C. Now if A varies continuously then I, & will
vary continuously. But C is a discrete group, so it
implies that IT;_, &; remains constant. In particular we
shrink A towards the point z such that angles g; tend
towards angles f3; of some Euclidean r-sided polygon.
Thus, &:=r,,(2a) tends to the limit 1,(2f) for each i,
while IT;_, &; tends to the product 1, (2]51 +28 +.
28,). Since I1;_,&; is constant and Yo B = (r—2)1t in
Euclidean polygon, then

M &= -2 20) = 2
Hence we get the following presentation for I

generators: £y ,&- ,...,&,; C, and

relations: & "'={,i=12,.,1;

Hf=1§i=C’"2;C§iC“‘=§,-,Vi.

Let us verify the property of the map p on co-
compact groups of any genus:

3.1 Corollary

If T and I'; are isomorphic co-compact Fuchsian
groups then they have isomorphic inverse images
under the map p, i.e.

p'(D=p’ ().

Proof

Let R, (I",G) denote the space of monomorphisms
r: I' = G such that r (I') is a co-compact Fuchsian
group. R, (I",G) is topologized as a subgroup of G
and it is known that it consists of the union of two
disjoint connected manifolds R,* (I',G) and R, (T",G),
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where Rt (I,G) is the group of all isomorphisms
which can be induced by orientation-preserving
homeomorphisms of H? including the inclusion map i
: I < G. (See MacBeath and Singerman [5] for more
details and terminology). I'; being isomorphic to T
means that there is a map r; eR,* (I',G) 'such that
(") = T'}. Define a path of monomorphisms’r, for 0 <
t < 1 with initial point r, = i and end point r;, and set r,
x)=x;,1, (@) =gq; (1), 14b)) b fori=12,..,r1
andj=1,2,.., g. These can be umquely lifted to &; (1),
a; (1), and B; (1) in the universal covering group G
respectively, so the initial points &; (0) = &; , &; (0) =
@; , and B; (0) = B; are determined. Now we deduce
that for the relations defining I" and therefore 1, (T') for
each ¢, there are integers q, (t) , q; (1),..., q, (t) such
that the following holds:

(g,-(t))m'? " i=12,..1r,and

1 & T Lo, B = 0

Since q; (t) above are continuous functions of t with
integer values then they are constants and q; (1) = q;(0)
for all 1, thus they establish the isomorphism between
pt (M and p! (Tp).

Presentation of p-1 (I'") (§4)

Suppose ¢ is the natural homomorphism which
takes T of genus zero onto T'/T’. Then the
composition map ¢° p will take T onto I'/T, thus p!
(I"") will be a centrally extended group of I'” hence it
will have a presentation of the following form:

generators: T;;,i=12,....1,j=1,2,... k;;

o, B, v=12,..8;
¢:and

relations: 7;'={,

n,=1fz,-n —l[a"’ﬁ } gL

=1,2,...,

and { commutes with every element;

where each one of the generators is chosen in the
inverse image of corresponding elements of I'” under
the map p and we have:

(Tq) u k4 l - 1,2,..., r,j = 1,2,..., k" S
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p(a)=a,,pB)=b,,v=12,.,¢g and relation
p(O)=1. e@lM))=-x @

We wish to calculate the integer L. First we give
some definitions and a theorem. If a'¥roup H with the
following presentation:

generators: &;, o, B, §,i=12,...,1,j=12,.., g

relations: £, '={%,

1i.& T loy, Bjl={%,and

{ commutes with every element,

becomes a Fuchsian group when we factor out its

centre < { >, then the rational number

qr»"z;l&! is
m;

~ called the Euler number of the group H and is
denoted by e(H). Bailey proved that this number is an
invariant characteristic of a SF-GP up to isomorphism

(see [1).

4.1 Theorem
If I is co-compact Fuchsian group then

e(@'T@)=x M
where p is the projection map.

“Proof

Let I have the following presentation:
generators: x;,i=1,2,..,1,

a,b;,j=12,.,g;and
relations: x," =1,

1 Y Hfa][aj,bj]-""- 1.

We give the compiete proof by splitting it into three
cases:
Case 1: T has genus zero. Then its Euler characteristic

2 (@ is 2- Tie(1-L) by definition, and from the
. m;
presentation of T = p! (I'), as obtained in section 3,

we get e(pl(N) =2 +r - Tins 1 and hence the

i
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holds.

Case 2: T has genus g 2 1 and every period m; has
even multiplicity. We can siippose that T has period
partition (my,mj;,my.my,...,...,m,,m,). Let I'; be a
group with genus zero and 2g + 2 + r stabilizer classes
such that 2g + 2 classes have period 2, and r classes
have periods my,my,....m,. Then by calculating in the
same way as in section 3, we find that p"}(T';) has a
presentation of the following form:

- generators : A, Ay ,..., Apgiz 1§12 5o & £, and
relations X?=§;“i ={,

2p+2

My A n,;i &= czgﬂ'

Define a homomorphism y:p” C2)—Z2 by
¥ (A) =1 (mod 2), for all i, and
v (&) =y (=0 (mod 2), for all j.

Since { eker y , then there’is a map y* : [) - Z,
such that:

y=y*op.
Denote ker y* by I';. By corollary 2.2.2, each

stabilizer class of <p(§a,-)>r2 in I’y splits into two
stabilizer classes in I's each of period m;, but the
stabilizer classes < p (4;) > in [, do not make any
change in the period partition of I';. So by the
Riemann-Hurwitz formula we get the genus of I3

equal to g, and hence we get T3=I" and by corollary
3.1, p! (') is isomorphic to p! (') = p! (ker y*)
which is just ker y. ;

Now we calculate the ker y from the presentation
of p1 (I'). Set:

AZ=A"0 Ai=p; Ay =y fori=23,..., 2g+2, and

/115]/11'1 = fj' forj=1.2,..,r,

then we get
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N=lyi=pil (6 M=E =g,
from the short relations, and
P2Y3P4Ys - Prg¥ag+1 Page2biba . &= (287,
§,r = 42 g*r,
from the long relation and its A,-conjugate.
By the above short relations, we can eliminate 4,
N5% »-Yrg+2 from those long relations, and get
gr = Cg+l' .
élr = Cg+r-2 .

If we find the value of p, from the second relation and
replace it in the first one, we obtain

A Y2034 - P2ge1 Yog+267162 -

P23t e prgir Prgaz &1 82

P23 o Poge Prge2 E1E2 -

2g+2 g.

Haad pt

2g+2 s,

i=3 Pz

2g+2r-2
1 &=

r-l 5;

where g; = (-1)I. If we abelianize the group and denote
the corresponding elements by a bar on top of them,
we get the sum of two groups, one a free abelian group
generated by p3, Pa..... Pg+2 Which has rank 2g, and
the other a torsion subgroup with presentation:

generators: §1,&2,....65 6, &,.....€,. {,and

relations: m;&; = muf C1—12, Wl

T E+E)=e+2r-D .

Then the abelianized group has the rank 2g and its
torsion subgroup has the order of mym,...m,e (p'(")),
hence we get the result,

Case 3: T has genus g 2 1 and periods my,my,..., m,.
Denote this by I'4, and define a map n:T"y — Z, by

n@p=1(mod?2),

7 (x) = 0 (mod 2) for x eIy , k # ap from
presentation 1.1.

Then by Singerman’s theorem and the Riemann-
Hurwitz formula ker 1, denoted by I's, has genus 2g-1
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So its Euler characteristic 4 (T's) is 4g - 2r + 4 +
25 El— which, by Case 2, is equal to -¢ (p"i(Ts)).

Seeing as p-l(I's) = ker (1) o p), we can work out a
presentation for it in the same way as that calculated
for p’}(T") in section 3, thus we get the periods m;, m;,
my, my, ...,..., m, , m, and an even power 2| , say, for
the central element { in the long relation. Then with
this integer|, the Euler number is

f:(p'1 T 5))=2{-2Z:,=1 R Comparing the two' values

my
of e (p'i(IT's)) implies that{ = 2g + r - 2. With this_
value of | we get

e (pi(T'y)) = -x (Ty).

Thus all three cases together ensure that the
theorem is true for every co-compact Fuchsian group
r.A

Now with Theorem 4.1, we compare the Euler
number of p-i{I""), (with exponent L in the long
relation)

(p (1“7)

l—l -

and the Euler characteristic of I'” from its presentation
obtained in section 2,

X@0)=2-2¢- Tiukill- ),

and we get

L=2g -2+ Z‘;’gl k.
Hence we have

plT)=<7,i=12,.,1,j=12,..k;
o,,pB,,v=12,..8;
s
@ipM=¢,
H::l Tij H%:l [a“ﬂ"] = C28~2+2,-.;k;’ >

=1,2,.k;
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4.2 Theorem

Suppose H and H; are two SF-GPs where H; is a
subgroup of H with finite index k and contains < { >
the centre of H. If the natural homomorphism maps H;
onto the quotient group H/ < { >, then we get

e(H)=ke(H).

Proof

In the proof of Theorem 4.1-Case 2, it was shown
that the abelianized group, denoted by any letter S/S°,
has rank 2g if e (S) is not zero. At the same time, one
could easily show that rank would be greater than 2g if
e (S) were zero, whence it would be true for its
subgroup S;/(S'NSy), for S; a subgroup of finite index
in S, with e (Sy) non-zero. So without loss of
generality, we assume that the Euler numbers are non-
Zero.

Let the group H have the following presentation:

generators: £1.8, ..., &5 01, Beensenns Op.B.L

relations: 6‘;-"‘= {%i=12,..1,
H’;=1 gingv..—.l [aV,ﬁV]=€q°’ and

¢ commutes with every element.

Denote by T" the Fuchsian projection (group)
H /< {>. Let p be any integer divisible by m; for
every i, and define the group H* by the following
presentation:

generators: £1,8;, ..., &5 01,Pseeesenns Og,Bp.C s

relations: £; = {(# 9, i=12,..T,

n;l éfnisl [a‘ﬂﬂ”]: quos and

{ commutes with every element.

This group has the same generators and relations of
group H but only the central element { is replaced by
¢¥, thus the groups H and p’! (I), for p the projection
map, are subgroups of finite index in H* and the
natural homomorphism maps both of them onto the
quotient group H*/< { >. Let Hy* denote the inverse
image of Hy/< { > under the natural map of H* onto I'.
If 'y denotes the Fuchsian group Hy/< { > , then the
groups H; and p™! (I";) are subgroups of finite index in
Hy*, and the natural homomorphism maps both of
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them onto the quotient group H;*/ < { > . Denote the

index of H in H* by p, then the centre < { > of H has
index p in the centre of H*. So there is an element {”
in the centre of H* such that {* = C hence H* has
the presentation;

> gr; al,B] yeesynesy agaﬂg;C, »

generators: £1,&, ...
relations: §T‘= {PYii=12,..1,
i &IT5.lay, Bu1= (P9, and

{’ commutes with every element.

Thus, we have

C(H*)“—" ’pq0"21= l&'
m;
-plae-2i1 2]
=pe(H)
Similarly

e *)=pe(Hy,
hence
el¥)eHp=cH M) ed).
The same argument applies to the groups H* | H,*,

pl (), and p1 (Ty).
Then we get

e@e@! T =eEH*e@! D)

From these two relations we get

ey _ e(H) “'c(P’l T 1))
e(H) eH* e(p-l (r)} ’

and by Theorem 4.1, the laiter is equal to % ((l;i))

-X
which is just k, the index of H; in H, by the Riemann-
Hurwitz formula.A
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4.3 Presentation of the Derived Group I’ of the SF-
Group I-

Let 7;; and 7°; be two distinct elements of the same
i-th coset in the presentation of p-! (I""). Then for each
i there is an integer 8; which establishes the relations

=500, =12, k..

So, we get

@ipi=gy (O =g il

hence

(Ti)he .

We have mennoned already that the composition
map ¢ o p takes T onto the abelian group /T Then
the central element { will have the order k/k in I /T ,
where k is the order of I'/T"' and equals —m
[my,m...,m,]
by Theorem 2.1-b and k is the order of T/I* which
equals the determinant of the following (r+1) X (r+1)
matrix:

my -1
mp 0 -1
0
m, -1
! 1 . . . 1 @2 ]
then

l~c=m{2~r+2’,;, -1—}.
m;

Let 6, denote the number k/k , then we have

o] (2-T4+2 1 1,

i

6,, = [ml, my,
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_mj [m;] (2_1.__1_.1.2;:1 L), j#iforeachi
l; m; mJ

= 1 (o n:),

i
A
where = [m;] = [my, mg,..., m; 1, My, y, ..., ), and n; =

m;
I

A
[my]
i
relatively prime, then 8, and n, are relatively prime for
every i.
Hence we can choose 6; in a way that we get

Theorem 2.1-a implies that and n; are

6,1 1+ﬁ,-9,- for every i,
in other words, there are integers e; such that we have
e;6, = 1+n;6; .
Denote (& bya, then we get
@)=
and the following presentation for r
generators: 7%5j,i=12,..,1r,j=12,...k;3

0, By =128

g;
relations: (z7i))"=({)®

H:‘;l T' ij H§=1[av,ﬁv]=(be°, and
j=l,2,...,ki

{ commutes with all the elements, where e, is some
integer and is calculated as follows:

Iisa subgroup of T and it has the conditions that
the group H; had in Theorem 4.2 with respect to the
group T in the place of the group H. Then we have

e(f)=§(e®).

But,
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goei
n;

ea:’)=9030‘2:-1

from the above presentation of I in terms of €,,and

e(f;)=r -2 ‘22—1 "1—
m;

from the presentation of T, section 3, and

k=m{2-r+X,, L}.
m;

So, by substituting these values in the above relation,
- we get '

rog m r 1
€o=X juj—- Q-r+3 . —).
n; [m;,ma,...m.} m;
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