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Abstract.
In this article, Lindley's measure of average information is used to measure the
information contained in incomplete observations on the vector of unknown regres-
sion coefficients [9]. This measure of information may be used to compute the missing

regressor values.

Introduction

A problem frequently occurring in statistical practice is
that of dealing with multiple regression when some of the
values of the explanatory variables are missing. Proce-
dures frequently used to deal with this problem [see 1,7]
are: (i) complete case method, (ii) zero-order regression
method and (iii) first-order regression method. A brief
description of these approaches may be found in Donner
and Rosner [4] and Hill and Ziemer [7].

Properties of these procedures have been compared
extensively, mainly through simulation studies by Beale
and Little [2] and Donner and Rosner [4]. Haitovsky {5],
and Heiberger [6] have found that for multinormal distri-
butions the method of maximurmn likelihood is preferable to
the complete case method. Donner [4] studied the relative
effectiveness of these methods by considering a linear
regression model having two regressor variables. He con-
cluded that the zero-order regression method is relatively
effective for estimating the coefficients of incompletely
observed variables when the correlations involving these
variables are weak and the proportion of missing observa-
tions is fairly high. The first-order regression method is
most effective for estimating the coefficient of the com-
pletely observed variable. Hill and Ziemer [7] investigated
the performance of some common procedures for replac-
ing missing regressor values under varying conditions of
multicollinearity. Their analytical and numerical results
indicate that the zero-order regression method is prefer-
able to other procedures given ill-conditioned designs. In
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addition, they stated that incomplete sample observations
should not be thrown away under conditions of extreme
multicollinearity. Afifi and Elashoff [ 1] suggested that the
parameters of aregression model be estimated using all the
data of a sample.

Shannon [11] derived an expression that quantifies the
amount of information produced by a source. Shannon's
work motivated a number of information measures in
statistics, [8,9,12]. In this article, Lindley's measure of
average information is used to measure the information
contained in the incomplete observations [9]. This mea-
sure of information can be used to compute the missing
regressor values.

Results and Discussion
Loss of Information Due to Incomplete Observations
We consider a two-stage normal regression model

£(Y1B) ~N(XB, 0%r), and hi(B) ~N(, 7Ip), @1

where Y(nx1) is a vector of observations, X(nxp) is a
known matrix with rank (x) = p<n, B(px1) is a vector of
unknown regression coefficients, 62 is an unknown posi-
tive constant, I is the nxn identity matrix, f(YIB) is the
conditional distribution of Y given B, h (B) denotes the
prior distribution of B, p(px1) is a vector of unknown

values and IP is the (pxp) identity matrix.
Lindley's [9] average amount of informationin Y about
B with the prior h () and posterior h,(Bly) is defined by:

J(Y;B) = E, (h,(Bly)) - I(h,(B))] 22)
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where I(h) = /'h(z) 1nh(z) dz for all z such that h(z) >0.
Alternatively, (2.2) may be written as:

J(Y;B) = //(y, B) 1n[f(y, B)/g(s)) h, (B)] dy d
= [/ f(yIB) h,(B) In [f(yiB)] dy dB
- J/E(yIB) h,(B) Inlg(y)] dy dp

= En E, [1nf(yIB)]-En; E, [Ing(y)] 2.3)

where f(y,B) = f(yIB) h,(B), f(ylIp) is the conditional distri-
bution of Y given f and g(y) is the marginal distribution of
Y. En, and E, denote the expectation operators with respect
toh (B) and f(y!B), respectively. Observe that for our setup
in (2.1) we have

g(y) ~N(Xu, o?V), V = (In + XX") 24)
We partition Y and X as follows:
Y'= (Y} Yo)and X = (Xe: Xo) @.5)

where X ((n-t)xp) is the design matrix, Y ((n-t)x1) is the
vector of observations corresponding to the complete
observations and X (txp) represents the rows in X corre-
sponding to the vector of incomplete observations Y,(ix1).

Theorem 1.

If £ (y,IB) ~N(X B, o1 £,(v,B) ~N(X B, 0%1), and
h, (B)~N(u, O'ZIP) then g (y,) the marginal distributionof Y,
and g (y,) the marginal distribution of Y, are also multiva-
riate normal:

i.g,(y) ~NX M, 0?V)).
ii. g,(y,) ~N(Xat, 62V,), h(Bly,) ~N(y,, 6°S)

(2.6)
2.7

where § = (I+ XoXo)", 1, = S( + Xay,)
V,=(,,+ XX and V, = (I, + XoXo)

See Lindley [9 p. 114].

Let f (y,IB) and g (y,) denote the conditional distribution

of Y, given [ and the marginal distribution of Y , respec-

tively. Then the mean amount of information in Y, about

B is given by:

J(Y,:B) = EnEq [Inf (y IB)] - EnEg [Ing (y)]  (2.8)
where Ey, denotes the expectation operator with respect to
f (y,IB). We define a measure of loss of information due to
the incomplete vector of observations Y, by

L(X ;X)) =I(Y:B) - I(Y :B), 2.9
where J(Y;B) and J(Y ;B) are given in (2.3) and (2.8),
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respectively. Now, the problem in hand is to evaluate

L(X,:X). ,

The following results are needed to compute J(Y;)
J(Y;B) and J(Y ;B).

Lemma 1.
Let f(yl) ~N(XB, 671 )
h(@) ~N@B,o’L) , gy ~NXB, o),
£y, ~-NXB,01,) . g0 NXpuoV)
£,(y,IB) ~N(X B, 0°1) s 8(y) ~N(X u, 6°V)

Then
i. EnEe [Inf(yIB)] = -% [1n27% + 1no?® + 1]
ii. By E¢ [1ng(y)] = -% [1n2r + Ino? + % InlVi+1]

iii. By Eq [1nf (v IB)] = - Dél [1n27 + 1Ino? + 1]

iv. EnEr [1ng (y,)] =-n?-t[1n2n+ Ino?+ {-L1nIV 1} +1)
n-t

v. EnEp [Inf,(y,IB) = - .Zt- [In2m + 1nc? + 1]

vi. EmEp, [Ing,(y,) =- -ZL [1n27 + 1no?+ L 1niv | + 1]
t

where V, V and V, are given in (2.4) and (2.7), fespec-
tively.
Proof.

We observe that

Inf(ylp) = - L 1n2n - & Ing? - L (y-XPB) "I (y-XP)

yB)=-7 ) 5o VXB B

Therefore

E[1nf(yIB)] = - _g. [1n2n + Lno? + %}

no
Taking expectation over h (B) we obtain

En B[ 1nf(yIB)] = - % [1n2x + 1Inc? + 1] (2.10)

This completes the proof of part (i).
Next we have

Ing(y) = - —;. [in2x + Inc? + il{ In IV[]
P CR AR
20
=-D[In2x + Inc?+ L 1nIVI]
2 n
i‘cls“z [{(y-XB) + X(B-W)) V" {(y-XB) + X(B-w)}]
=-0[1n2x + Inc?+ L 1n V)]
2 n

L (y-XB)' V! (y-XB) -2 (y-XB)'V X(B-
5o (y-XB)'V! (y-XB) S (y-XB)Y V' X(B-w)
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-2 By XV X (B-w).
202
Hence
E[lng(y)l = - % [1n27 + 1no? + % 1n IVI]
-Lgviel

-2 (B XV X(B),
= L (B (B-)

where tr(A) denotes the trace of a square matrix A. Taking
expectation over h (B) we obtain

EnEd Ing(y)] = - % [1n27 + 1no? + % In IVI] - %uv-l

- gXviXe?l
202 P

=. % [1n27% + Ino? +% 1nIVI] - %tr(V" + VIXX)

=-D[1n2n + 1n61+r11—1n VI + 1]

This czompletes the proof of part (ii) of the above
lemma.

The proofs of part (iii) and part (v) are similar to the
proof of part (i) while the proofs of part (iv) and part (vi)
are similar to the proof of part (ii). Hence the proofs of
these parts are omitted.

Now, under the hypotheses of Lemma 1, the amount of
loss of information due to Y, the vector of incomplete
observations, may be measured by

L(XoXe) = (Y5 B) - (Y 5 B). (2.10)
Now,
J(Y; B) = EnE; [Inf(yIB)] - EnE¢ [1ng(y)]
=L inivi (2.11)
2
and

J(Y: B) = EnEx, [1nf(y 1B)] - EnEs [1ng,(y,)]
=Liniv) (2.12)
2

Next, in accordance with the partition of X in (2.5) we
partition V as follows:

v Vi KXo @.13)
XX: V2
where V and V, are given in (2.7).
From (2.13) we obtain
IVI=1V 11V, - XoXe VI XXl
v, 11 XXX v X0
IV, 1T+ XAl - X2 Vi XOX 2.14)

Using (2.14) in (2.11) we get
IY; B) = % IV 1 + % In IL+ Xollp- Xe Vi XX,
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=% v, +i—1n‘L+XLS’1X£,| 2.15)

where S; =lp- X ViXe
Next, from (2.10), (2.12), (2.7) and (2.15) we obtain

L(X, x;)=%1n|V1|+;_1n|I;+X;81X;I ‘;—lnlvd

=Lin |1+ 38,

Information Contained in Incomplete Observations

In this section, we want to compute the average amount
of information contained in Y., the vector of incomplete
observations. The average amount of information con-
tained in Y, on B is given by

J(Y,; B) =EnEs[1nf2(Y21B)] - EnBr[1nga(Y2)]

From parts (v) and (vi) of Lemma 1 we obtain
Y, = L tnr+ tno?+ 1]+2L[1n2n+ tnot+Liafvafs 1]

=1l1p |V2|=l1n|1t+X;Xél
2 2 .

To compute the missing regressor values the experi-
menter may maximize J(Y,; B) for the choice of X . He
may impose some restriction on the columns orrows of X .
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