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Abstract

The purpose of this paper is to show that ideas and techniques of the
homotopy continuation method can be used to find the complete set of
eigenpairs of a symmetric matrix. The homotopy defined by Chow, Mallet-
Paret and York [1] may be used to solve this problem with 2" Ln curves
diverging to infinity which for large n causes a great inefficiency. M. Chu [2]
introduced a homotopy equation to solve this problem. In this method itis
necessary to follow 2n curves to handle the problem. Our methodisbasedon
a special homotopy system of equations which consists of exactly n distinct
smooth curves and connects trivial solution to desired eigenpairs. It is
important that in our method we avoid finding explicitly the coefficientof the
characteristic equation, as all experienced practitioners are aware of the
large error that may result from the use of the approximate coefficientsof the

characteristic polynomial.

(1) Introduction

The eigenpair (eigenvector, eigenvalue) problem
for a square matrix A e[R ™ is that of determining a
scalar A and a vector x such that

Ax=Ax,x#0 (1.1)
The problem is clearly nonlinear since both A andx are
unknown. Since the eigenvalues are the n roots of the
characteristic equation
det (A-A)=P(A)=0. (1.2)

They can be found without reference to any of the
eigenvectors. For a given eigenvalue A, the correspond-
ing eigenvector is a nontrivial solution of the linear
system AX=AX.

This paper is concerned with the homotopy
continuation method for calculating the complete setof
cigenpairs of a symmetric matrix, and we avoid finding
explicitly the coefficients of P(A) in order to determine
the eigenvalues. Instead, a special homotopy is intro-
duced and we shall prove that there are exactly ndistinct
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smooth curves which connect trivial solutions to the
desired eigenpairs. In fact, these curves are solutions of
certain ordinary differential equations with different
initial values, and hence they can be followed numeri-
cally by any ordinary differential equations solver.

We emphasize the practical importance of not
finding explicitly the coefficients of P(A) in order to
evaluate the polynomial. All experienced practitioners
are aware of the large error that may result from the use
of the approximate coefficients of P (A) for calculation
of the zeros of the characteristic polynomials.

(2) The Algorithm

We restrict our discussion to the symmetric
eigenpair problem
Ax=Ax, X#0. (2.1)
Although through astandard tridiagonalization we may
assume, without loss of generality, that the matrix Aisa
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Jacobian matrix with nonzero off-diagonal elements.

The eigenpair problem can be thought of assolving
a nonlinear algebraic equation

f(x,A)=0, (2.2)
where
f:IR"X [R —— IR"
is defined by
f(x,A)= Ax-Ax.

There are many well-developed methods which
can be used to find the non-trivial solutions of
f(x,A)=0. Forexample, suppose thatthe spectruma(A)
is simple. Then the classical Newton’s method and its
many improved modifications are particularly well
suited for solving (2.2). Since its higher Frechet
derivatives can easily be determined, the second
derivative is constant and higher derivatives vanish. For
a detailed discussion of this approach, see |3]. Unfortu-
nately there are some disadvantages in using the
Newton method. One of them being that Newton's
method can converge (if it ever converges) to only one
eigenpair at a time. That is in order to compute all n
eigenpairs of ‘A, we have to restart the iteration by
making n suitable guesses. One possible approach to
solving this problem by the homotopy continuation
method is to view (2.2) as a system of n+1 quadratic
polynomials in n+1 unknowns. Then the special
homotopy defined by Chow, Mallet-Paret and York [1]
is applicable for solving (2.2). However, there are at
least 2""!-n curves diverging to infinity which causes a
great inefficiency (particulary for large n). Another
approach presented by M.Chu to solve this problem is
[2]. He defined a homotopy:

H:IR"XIR X[R — [R"X[R
by
H(x, A,t)=(][D+t(A-D) - Al]x,3(x'x-1)), (2.3)

where D is an arbitrary diagonal matrix with distinct
elements. Applying this homotopy has the following
disadvantages; a) if we follow the n distinct curves
suggested by M.Chu we may not getall eigenpairs, since
two of these curves may link into a pair of eigenpairs of
the form (x, A) and (-x, A), (so they actually represent
one eigenpair), b) to get all eigenpairs we actually must
follow 2n distinct curves rather than n curves.

In order to remedy this problemandsolve (2.2) ata
reasonable cost, a special homotopy is constructed as
follows:

Let D be an arbitrary diagonal matrix with distinct
elements on its diagonal. Construct the homotopy
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equation

H:IR" X IR X [R— [R" XIR
defined by
H{x,A, 1)

=([(1-t)D+t,c\-,\1]x,.;_21 x, -t(x'x):1), (2.4)

where € is a small positive number. It is clear that
vectors

x(0)
A0)| | d

are the eigenpairs of H(x,A, 0 ), where e, is the standard
ith unit vecter and d, is the rthelementof the diagonal
matrix D. We should mention here that the crucial step
in applying the homotopy continuation method is the
construction of an appropriate homotopy, such as (2.4)
so that 1) the existence of a curve connecting the trivial
solution and desired solution is assured and ii) the
numerical work in following this curve has areasonable
cost. '

In the nextsection we shall show that the homotopy
equation (2.4) guarantees the existence of n distinct
smooth curves, each of them leading from an obvious
starting poinr to a desired eigenpair. Furthermore, if a
certain curve links to an eigenpair (x,A), thenthereisno
other curve that may link to (-x,A). These curves are
characterized by an explicit ordinary differential equa-
tion wigh distinct initial values, and hence they can be
easily followed by any ordinary differential equations
solver. Coupled with the large scale matrix techniques,
this method can be used to solve eigenvalue problems
for sparse matrices [5].

(3) Theorems

In this section we present some theorems which
serve as a theoretical basis for our algorithm.

Theorem (3.1)

0 e[R"XIR is a regular value for H. In other words,
foreach (x,A.t)=0 suchthatH(x,A,t)=0 ,theJacobian
Dsw Hhasrank n+1.

Proof »
Let (x,4, 1)eIR"XIRx IR and H(x,A,t)=0 .
Observe that
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Dxxni™
(I-)D+1A-Al X (A-D)X
- o . (3.1)
Etx)%, e (x)x,) 0 -(xx)?
Since H(x,A,t)= 0, we have
n — -
.eZl X-t(x'x)t=1 (3.2)
i
and
((1-)D+TA-AI).X= 0. (3.3)

We claim that the (n+1)x(n+1) matrix
(IFOD +tA-AL

is of full rank. Since otherwise there exists a vector
(yu)'# 0 with yeIR", and uelR" such that

Yy 0
D(X,A)H. = (34)
n 0
thus
((1-)D+TAAL).y-ux=0 (3.5)

This implies o o
% L((1-)D+1A-AL).y=pux'x.

Since A is symmetric, and X is orthogonal to the
rowspace of the (1-t)D+tA-2I, we have

w3 = pR'%=(x". (1-)D+TA-AD).y)'
=y (IT)D+TA) X=0 .
This implies u=0. Therefore

(1T)D+TA-AL).y=0. (3.6)

Since the matrix (1-t)D+tA-A I has a simple spectrum
([4}, Lemma 6.1), we conclude that the matrix B=(1-
1)D+tA-Al has a set of orthogonal eigenvectors say, z,,
Z,,..:, Z,, With corresponding eigenvalues §,,8,,...,5,.
Let
X=az,ta,2,+...ta,z,,
y=B,z,+B,z,+...+B,z,.
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Then by (3.3), (3.6) and orthogonality we get

a=0546 i=1,2,...,n.

Therefore y=8% for some 8. Substituting y=8X and
u=0in(3.4)

we get
(1-1)D+1A-A1 X[} 6% 0
e-I(x%)EX,,...,e xR, o ol o
Thus by (3.2) we have,
0=8(e2%, xRN =8 (3.7)

Hence D5 5,Hisofrankn+ 1. Thiscompletes the proof.

Remark. We have restricted our discussion to the
Jacobian structure of matrix A. Thisis needed onlyasa
sufficient condition for Theorem (3.1). This condition
may be rephrased as «choosing D sothat the matrix (1-t)
D+1tA has asimple spectrum foranyte[0,1}». Overall,
it is only needed that the matrix D, , ,, H be of full rank
for any (X,A,t) elR"XIRXIR with H (x,A,t)=0.
Apparently the sparse matrix techniques can be
incorporated in any of these cases.

As is the usual procedure of the homotopy
continuation method we start from a trivial solution of
H(.,.,0) at t=0, and follow the generated path as t
increases from zero to one. We hope the trivial
eigenpairs deform into the eigenpairs of the original
matrix A. Hence, we would be able to follow the n
distinct connected paths from the trivial system to the
original problem. In order to assure that this process
works, we prove the following:

Theorem (3.2) Let us define
I={(X,A, t) elR"XIRXIR:H (X,A,t) =0},

Then

a)I is a one dimensional smooth manifold

b) as t increases, the curve I" will never turn back.
Proof: Part (a) is in fact a standard result from the
differential topology [6]. That is , a repeat use of the
Implicit Function Theorem implies that I' consists of
one dimensional manifold.

Inorder to prove (b), letI" be parameterized witha
parameter 8. Along each component, we may take the
derivative with respect to the parameter 8. The setI'is
then characterized by
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dx
de
D, HI sp_ H. | dr |=0 (3.8
(UFY] (CW SRR ki . -8)
dé

We claim—qz-# 0, since otherwise

de
dx
0
D, »H. [ =Q.
0

d
a4
d

Hencel()x‘A)H would besingular This completesthe proof.
Now consider starting a path at t = (. Since t'# 0 .
Without loss of generality, we may assume t> (. So as
we increase the parameter 8 ,t( 6) cannot reverse. The
following lemma shows that as t tends toone the curve I’
remains bounded. In other words for any 0 <ty<1,
the set

To={(x,A) elR"XIR: H(x,A, t) = 0 forsome t €[t, 1]}

(3.9)
is bounded.
Lemma (3.3) The set I'5is a bounded set.
Proof: By equation (3.3)
AONK[=[[1-)D +tAKI<|(-)D + Al x|
<(IDI+ AN
Hence
IMOIIDI+IA] (3.10)

Also for any (X ,A)el’g, equation (3.2) implies

tolxli<ixll={1+ lexal

n

<+ eSixp=1+ellxl;
i=l

L+ evnjx|.
Thus fore small enough such that eVn<tg, we have
L 3.11
[Ixll<— . (3.11)
to-evn

Therefore Iy is bounded. (Here by ||.| we mean ji.,.)
Part (b) of Theorem (3.2) implies that I’ will never
turn back. Thus I’ can be parametrized by the variablet.
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Then (3.8) becomes

dx -1
a0 (1-t)D+ tA- Al -X (D-A)x
d = % '
_d% e—t(x'x)ix,,...e~t(xx)tx, 0 —(x'xy?
x(0) e/e | . (3-12)
= l=1,2,...,n.
A0) di

These differential equations may be solved by any
ordinary differential equations solver. Over all foreach
1<i<n the numerical solution of (3.12) att = 1 is an
approximation for an eigenpair of the matrix A. The
following lemma assures that among the computed
eigenpairs we will not have a pair of eigenpairs of the
form [x,A] ' and [-x,A]".

Lemma (3.4) There is no pair of eigenpairs of the
form

XA, [-x,A].
Proof: Since otherwise both vectors satisfy equa-
tion (3.2) with t=1. Subtracting the two resulting

n
equations gives E‘i x, =0 . Substituting this in (3.2) yields
i=

'||x||2=-1, a contradiction.

(4) The Algorithm

We have seen that the set
I'={(x,A,t) :H(x,A,t) =0 }. (4.1)

consists of exactly n curves, and each of them is the
solution of the differential equations (3.12). We
proceed as follows:

I) Choose any diagonal matrix D with distinct
elements on its diagonal.

II) Seti= 0.

III) Seri=i+1, and take

-x(o) ei/€

A(0) di (4.2)

IV) Solve the differential equations (3.12) with the
initial value (4.2) by using any ordinary differential
equations solver.

V) At t=1, write down the computed valuesfor the

vector
x(1)
A .
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(This is the ith eigenpair of matrix A).
VDIf i <n, go to 11,
VII) If i=n stop.
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