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Abstract

The nth order differential equation x* + i ¢, (Ox¥Y + fltx) = e(®), n >3 is
i=1

considered. Using the Leray-Schauder principle, it is shown that under certain
conditions on the functions involved, this equation possesses a periodic solution.

We consider the nth order differential equation

X+ i ¢, (XD + ftx) = e(t), n>3

i=2

6y

where ¢, (1) ,i=1,2,...,n-1,e(f) are continuous for ¢ € [0,
w] and f (¢ x) is continuous on [0,w]x IR. Furthermore we
assume all solutions of initial value problem for (1) can be
extended to [0,w].

Theorem 1
In addition to the above hypotheses assume

) If (¢, ) <ylx+ B, te [0, wl, Ixl<oo

1 Wyn-i+l Wiyn
i3, 7, G+ Gr<l,

‘where yand P are positive constants and %= max ch(t)l,
j=12,...,n,1e {0, wl.
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Then Equation (1) has a solution satisfying

X004+ xP(w)=0, i=12,...,n-1 2)

Proof

First we look at the following differential equation

X0+ 3 ¢, (X0 = ule(d) - f(1.0)]

=2

3

where p e [0, 1] and find an estimate for the magnitude of
its solutions satisfying boundary conditions (2).
We shall make use of Wirtinger’s inequality written in

the following form. Assume x(f) € ¢*'[0, w] and x(t+ w) +
x(¢) =0, then

1D, , <@ i @1l )

where I, = [ ()P d”.
Let x(f) be any solution of (3), then

lxwmlsf‘, ¥, bt Ok [le ()1 + (0l +6)
i=2

Applying Minkowski’s inequality, we obtain
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01, S5 7, 1 1, -+ Dlell, i, + ]

By Wirtinger’s inequality

I, %} 2, @ N, el ¥ Il 4 B
Hence,

9, (13, 7, G- uy Q)< el .+ i

Considering assumption (ii) we can write

"x(,,)“mSu . IIeII1/2+ﬂ1IW
1- 22}, l(_)n 1+l y(wn_)n
Since 0 < p <1, we get
i, < pa,
Ao= llell1/2+ﬁ1IW (5)

1 _g Yi_l(%wiﬂ ) Y(_‘%;n
Next, write
XD () = 46D (0)+J;x(’c)d1:;i= 1,2,...,n
Hence,
e W=x©+| x@ur
Using boundary conditions (2) we get
X (w) = -x “D(0) =%L X@)dGi=1,2, .0
As aresult
WD (< % [: wO(D)ldr,
And by Holder’s inequality

LD (t)|< L X,
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Using Wirtinger’s inequality

& (0l % W, P=12,.n

Finally, using inequality (5) we obtain the followihg
estimates on the magnitudes of the solutions of (3)

b (< _;_ oy (_;%)n—id-l LA, (6)

For p = 0 we obtain
X (=0,t€ [0,w],i=12,....n

Hence, we have shown that homogeneous equation

4 2 ¢, (=0
i=2

has no nontrivial solution satisfying boundary conditions
(2). This implies the existence of Green’s function G(t,s).
Using Green’s function we can write the solution of
Equation (3) with boundary condition (2) in the form

X0 =p ] Gt e (5)-f (s xts)l ds ™
Next we consider the space ¢”[0,w] and define the norm
Ibeller = max WD ()l i= 1,2, ..., n, te[0, w]
Now let

= {x(t) € c* [0, w]: lldl» < p}
where

= _l_ Wyn-i+l i =
p—m?x{zﬁ(n) Lhi=12,...,n

and define the operator L on B_ by

)= u[ G(t.5) le(s) - fs, x(s))1ds ®

It follows from (6) that Equation (1) has no solution on

the sphere Sp= {x: lldl-»= R}, R >p. Hence, by the Leray-
Schauderprmc1ple and complete continuity of the operator,
we conclude that (7) has at least one solution in the open

ball {x: lixl.» < R} and therefore it has a solution in B,
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Thus, we have shown that Equation (3) has a solution for
p=1 satisfying boundary conditions (2).

Corollary 1

If in addition to the hypotheses of Theorem 1, we
assume (iii) c,(#), i =1,2,..., n are periodic with period w.
(iv) e(t)is 2w periodic, that is, e(¢, 2w) = e(¢) and in addition
e(t+w)te() = 0.
(v) f(t.x) is w-periodic in ¢ and in addition f{¢, -x)= -f(t, x).
Then Equation (1) has a 2w-periodic solution with zero
mean value. '

Proof
A 2w-periodic extension of solution of Equation (1)
can be defined as

0<isw

x(0)

-x(t+w) -w<t<L0

Z(t) =

First we note that boundary conditions (2) imply the
continuity of z(f) and its derivatives up to and including (n-
1)st derivative. From assumptions (iii), (iv) and (v), one
can easily conclude that z(t) is a solution of (1) satisfying
periodic boundary conditions
2O (-w)=z% W)

i=0,1,2,...,n1 )

To show z(¢) has zero mean value we look at
2w w éw
| ewar=[ zware | 2w
0 0 w .

w

=jwz(t)d:+[ {t+w)ydi=0
0 0 -

Similar results can be obtained for the case of differential
equation

X4 2 9., (X4 Rt x) = e(t) 10
=2 '

where ¢,,i=1,2,..., nare continuous and they are even with
respect to their arguments.

Theorem 2

Inaddition to the above hypotheses and the assumptions
of Theorem 1 and Corollary 1, regarding the functions f
and e, we further assume

n

n-i+1 Win
2 M, @+ yCRr<t,
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where m=max | ¢, (X)}, i =1,2,...,n-1. Then Equation (10)
admits a 2w-periodic solution with zero mean value.

Proof

The proof follows along the same lines as in the proof
of Theorem 1. Here, again, we can show differential
equation (9) has a solution satisfying boundary conditions
(2). Now we construct a 2w-periodic extension of solution

- x(t) of Equation (10) satisfying periodic boundary -

61

conditions (9). The rest of the proof follows as in Corollary
1. :
Next we consider differential equation

X4 Z e (DX (1, %, 2, . XOD) = e(r) 11

=2

where c(#) and e(¢) satisfy the hypotheses (iii) and (iv) of
Corollary 1 and f is w-periodic in ¢. Furthermore, we
assume -

22: % @il (12)

where ¥,=max Ic()l, i = 1,2,..., n-1, t € [0, w]. Then the
following theorem can easily be shown.

Theorem 3
In addition to the above hypotheses assume

V) I, IS F forallx, i=1,2, ..., n-1
vi) fit, x) = flt,x),i=1,2,..., n-1

wheref{t,x)stands forf{t,x,, x,,....x, ,),then Equation(11)
has a 2w-periodic solution with zero mean value.

Corollary 2
The results of Theorem 3 remain valid if instead of

assumption v) we assume V)If(t, x)I<6,+6 i lx)
i=1

provided
- Wyn-i+1 n,
3, (81 )&y Hy<

Example

Consider a one-degree-freedom system of quarter car
model shown in Figure 1. The nonlinear suspension spring
has the stiffness k and is proportional to the cube of the
displacement x.

There is a nonlinear viscous damper with coefficient ¢
and a nonlinear damper ¢, with velocity squared damping
behavior. The actuator A is assumed to have a force
proportional to the derivative of acceleration, The vertical



Vol.9 No.1
Winter 1998

F cos ot

. s

Sensor

K [} —|-
Cl ' C A
|
Figure 1

motion of the system is considered under an induced
periodic external excitation F, COs wt.

The following differential equation is obtained for the
displacement x

Ax" + mx" + cx'+ ¢ '+ k= F cos wit
or

13)

X"+ _nlx" + C_x'+f(x,x')= E—O- COs th
A B A

We apply Theorem 3 for the case n=3. From inequality
(12) we obtain
Y, W) + v, (wim) < 1, where ¥,=m/A, v,=c/Aandw
= 1t/w,. We obtain '
w,> 2m [(c*+ 4mA)"2- ]!

Wealso notef(x, x)=(c,x 1x+kx’)/B satisfies condition
(vi) of Theorem 3.

Next let k(i-1) ()1 < 8, re [0, w], i = 1,2,3. Then for
every O there exists an F(J) such that
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F(8)= /_i(c,mka’)
The bound for Lk (i-1)(¢)ltakes the form

- 1 12 i-4
bD(f) < 5(%0) wi4 pA,
where
Fo/A+F (& (/wo)'®

A°= -1 -2
1-(c/Awy -(m/A)wy

Hence if w, is large enough, then for some > 0 we will
have

-;-(n/wo)”’ widpA <8 ,i=1,2,3

Now applying Theorem 1, the existence of a2w periodic
solution of Equation (13) can be proved.
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