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Abstract

This paper describes a solution for the flow of a viscoplastic material in a circular
Couette drive with an imposed axial flow, sometimes called a helical flow. The
problem is interesting because for a non-Newtonian fluid the circular Couette flow
and pressure driven axial flow are coupled, whereas fora Newtonian fluid these flows
are uncoupled. In the last three decades, theoretical analysis of helical flow of non-
Newtonian fluids has been attempted by many authors. The solutions have been
obtained in terms of several variables including impressed axial pressure gradient in
the annulus and the rheological model parameters. The fluid models are an idealiza-
tion of a certain class of complex fluids which show yielding behavior when an
applied shear stress exceeds a certain critical value, called the yield value. We have
considered two different conditions. These arise from the fact that when the shear
stressis below the yield value, at some pointin the annulusregion the fluid willbehave
like a solid, whereas when the shear stress is above the yield value at all points within
the annulus there is no solid (plug) region. We obtain a solution for the axial flow of
viscoplastic material between two concentric cylinders. The inner cylinder is as-
sumed to rotate about its axis with angular speed Q, while the outer cylinder is
stationary. Rotation of the inner cylinder drives the tangential flow of the fluid
contained in the gap. We present the results in the form of relation between
dimensionless parameters involving the moment acting on inner cylinder, the
volumetric flow rate, the fluid properties, and the dimensions of the annulus. By
numerical integration, prediction is made of axial velocity profile, azimutal velocity
profile, and axial and radial pressure gradient profiles in the annular region. These
profiles are found to be affected by axial flow as well as rotation velocity.

Introduction
Treatment of helical flow was first considered by [5] used the constitutive equation developed by Rivlin and
Rivlin and Ericksen [1,2]. Rivlin presented his results in introduced an arbitrary function which turned out to be
terms of eight material functions, however Coleman and simply the shear dependent viscosity. Dierckes and
Noll [3,4] showed that only three are necessary. Fredrickson Schowalter [6] presented an analytic solution for a power
law fluid in a system with the outer cylinder rotating. Rea
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profile of a power law fluid in a helical flow system and
compared their findings with predictions made from tube
viscometer data.

Tanner [8] presented the theory of helical flow as

Javadpour and Farrahi Moghaddam

applied to a model by Oldroyd [9], along with some . .

experimental results. Savins and Wallick [10] made quan-
titative predictions to show how the axial discharge rate
and pressure ‘gradient, as well as angular velocity and
torque, become coupled when a fluid exhibiting a shear-
dependent viscosity behaviour is subjected to a helical
flow field.

Bird et al. [11] produced an analytical solution to the
equations for helical flow in a very thin annulus for power
law fluids, for a power law index n= 1/3. Huilgol [12]
proposed a trial and error method to solve the helical flow

problem for general fluids in terms of four parameters,

includihg one related to the axial pressure gradient. De-
tailed numerical analysis of the helical flow of power law
fluids for any cylinder dimensions, and experimental veri-
fication was carried out by Sestak et al. [13]. Bhattacharya
et al. [14] solved the problem of axial flow in a rotational
rheometer for power law flows. In their final equations, the
axial pressure gradient term was eliminated, thereby re-
ducing the number of variable parameters to three.
Javadpour and Bhattacharya (15, 16] solved the problem
of axial flow in a rotational rheometer in a series of papers
for Bingham plastic and Herschel-Bulkley models. They
were able to obtain the shear rate-shear stress relation and
viscosity distribution for different values of the flow rate,
torque and yield stress.

Javadpour [17] presented the viscosity distribution and

velocity profile for the helical flow of a Herschel-Bulkley.

fluid, in terms of dimensionless variables for the volumet-
ric flow rate, moment acting on inner cylinder and fluid
properties.

The main goal of this paper is to present a detailed
numerical solution to the helical flow of a viscoplastic
material as Casson plastic model [18], for any cylinder
dimensions. We consider three distinct situations for dif-
ferent values of dimensionless parameters for the two
cases where a plug region does or does not exist in the gap.

Formulation
We consider the fluid to be contained between two
coaxial cylinders of radii R, and R, where (R,<R)). A
helical flow pattern was generated by pumping the solu-
tion through an annular space, while rotating the inner
cylinder with angular velocity Q.
We use cylindrical coordinates
x'=1,x=0,x=z

M

The velocity field of the fluid in this coordinate system
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is
v={(v:=0, ve=ra®, v.=v @)

@

-which automaticafly satisfies the equation of continuity.

We consider the Casson equation. The relation be-
tween shear stress and shear rate is given by,

fr§=n<ym,n<7>=r/v,
\Txn:féh (o) “if 270 €)

"Y=0 _if ITISTO

where 1, is the yield stress; M, is the limiting viscosity and

* “yis given by

180

7 =A(r0’ @) + (v'©)% @

where Yis defined as total shear rate and prime denotes the
derivative with respect to r.

The nonslip boundary condition at the inner (R)) and
outer (R,) cylinder are

vz(Rl)= vz(R2)= 0’
VR )=RQ, vR)=0

If we express the gravitational force in terms of a scalar
potential ¥ by

&)

g=-V¥ ©

and define

®=P+p¥ -

where P is the fluid pressure and p is the fluid density
(constant), the equations of motion take the form

1d ) - Lt __82=_ w2 8
rclr( ) -+ Tee 5 =P ®
L—d Tz, '-——ad)=0 9
F () - 22 ®
1.d (127,9=0 10
bl (10)

The nonzero components of the total stress tensor are

Tro=10' @M (), Tr=v (r)n () (11)
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where [T is the second invariant of the strain rate tensor.
Itcan be shown from equation (10) that the stress field,
regardless of the fluid rheology, is given by

M

Trg=~—2¥2_

2rr? (12)
where M/2r is the moment per unit length in the axial
direction to maintain the rotating flow. It is worth noting
that because the inner cylinder rotates and the outer one is
stationary @’(r)<0 and hence 1 o 1S Negative,

The physical variables can be written in nondimensional
form through the substitutions

=L =2 00 . VO
R, R2 R1Q R1Q
(13)
0= _RL.(O,’)'I *=_EZ_?’ h= Tij
RiQ R1Q MoR; Q/Ro
and
Q* = .___Qh_.__, M*=_M ,
=(R3 - R} R1Q HoR R0
O* = R,D
RiQ yo
and to= —R2__ 105 called Casson number.
WoR1 Q

The dimensionless form of the equations of motion are

) ' =Rey r* 0" (14)
or*

L .d (g2, .92 (15)
r dr* z*

1 d (r22)=0 (16)
r*dr*

where the equivalent Reynold number is
Req = pRz(R; ﬂ) /po
From equation (14), using equation (15) and the fact of

depending the stress only on r that result from equation (2)
and postulate for a simple fluid, we obtain
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1

® =R ] r'eo*? (r)dr'+202*  (17)

where 2a is effective axial pressure gradient and is con-
stant.

The nondimensional form of equation of state can be
written as

T2 = g 1Ry 1s)
The boundary conditions become
o+ @=v,+(1)=0, vg @=1 and vg (1)=0 19)

where a= R /R, T° and 7y * are defined by (13).
Solving equations (15-16), we obtain the stress compo-
nents as

f;ri‘ztzar*-i-ﬁ/r* R 1,18=.M*/(21cr‘2) (20)

For helical flow of a fluid for |t| 1o, using equations
(11) and (20) we obtain

N )re” (') =-M72m"
n)v ()=ar+p/r*

21
(22)
Using equation of state (18) and defining the total shear

stress as 1" = 'cr?zv + r}%, from equations (4) and (21-
22) we obtain

2
V= [«“/(M"/zm"?}2 +{or* + B/rY)? 481’?‘] (23)

and

)
23

2
[‘\/(M*/an"z)2 + {or* +p/ry? -13”2]
’\/(I\/I‘/2nr"‘2)2 + (ar*+p/r)?

(24)
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2
[’\/(M"/Zﬂ:r“z)2 +(or*+B/r*)? -151’2]
'\/(M'/21tr"2)2+ (ar*+p/rY)?

(25)

Note that when T;= 0, then v™(r") =(a o+ %) which
r
is in its Newtonian form.
We now have to consider three distinct situations for
each value of the Casson number 1, by choosing the
volumetric flow rate Q" as a constant, while M* changes,

and vice versa.

Casel

When |1|>7g, everywhere in the annulus i.e. shearing
stress is above the yield value at all points within the gap,
then integrating ™ subject to the boundary conditions
gives

I 0 () dr=" (26)

and integrating (25) subject to conditions (19) gives

1
Gifo, B)=j v *(r)dr*=0 @27)

Using the fact that the axial flow rate at any cross-
section of the annulus is constant, we obtain

1

G2(a s B):] r*2v /*(r*)dr*
: 28
+Q"(1-29)=0 @

Case I

We have T'(r3) =1, where a<r,<1. Therefore, particles
in the fluids occupying the region between r,<r*<1 have
zero velocity, material near the outer cylinder will behave
like a solid with y =0, and flow occurs only for values of
r* such that a<r’<r,. Thus we write

(29
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Gi(a, B)=j v (r)dr*=0 (30)
Go(o, B)=f sr‘2 v {(r?)ar*
’ (3D

+Q"(1-29)=0

Case III

If there are two values such as r, and r, between a and
1 in which T*(r3)=1"(r4) =10, then particles in the fluids
occupying the region between r,<r’<r, have constant ve-
locity and the material in this region moves as a solid plug,
in this case we have,

(32

Numerical Techniques

By the numerical integration of the equations G (o,
B)=G (o, B)=0 with the use of Simpson’s rule and the aid
of the Microsoft Excel Solver which uses the GRG2
nonlinear optimization [19], we found o and P for each
case.

The values of o and B may be applied to calculate the
components of velocity and the magnitude of velocity Ivi

2
expressed as equal to ‘Y v;z + v; at the different

pointsin the annular region. Viscosity may be obtained as
total shear stress divided by the total shear rate.

Results and Discussion

We have studied the helical flow of a viscoplastic
material as Casson plastic model between a coaxial annu-
lar region. The effect of volumetric flow rate as well as
rotation velocity on the axial velocity and the azimutal
velocity profiles within the annulus is predicted. Compari-
sons were made for decreasing moment acting on inner
cylinder for two values of volumetric flow rate.

We carried out studies of the problem when at some
points within the annulus the value of shearing stresses
goes below the yield value. In this region, the fluid will
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behave like a solid. We find that there is an interesting
structural change in the velocity patterns with changes in
the volumetric flow rate and rotating velocity which was
not considered in the earlier studies.

Total shear stress and total shear rate relation for a
Casson model is presented in Figure 1. The full line
represents the graph of the nondimensional form of the
equation of state and the dotted line represents the differ-
ent volumetric flow rates and shows that the axial flow rate
did not have any effect on the flow behaviour curve.
Similar behaviour was observed for Herschel-Bulkley and
Bingham plastic fluids [15, 16].

The velocity profile in a helical flow will be dependent
on the magnitude of the azimutal component of velocity
imparted by the rotating cylinder and axial velocity com-
ponentdue to the imposed axial flow. In Figure 2, the axial
velocity component has been estimated for a constant flow
rate corresponding to various moments acting on the inner
cylinder. '

It should be pointed out that at low values of flow rate
and decreasing moment acting on the inner cylinder three
cases will arise. In case II and III we can see a solid plug.
In case II particles near the outer cylinder have zero
velocity, while in case I11, particles in the middle of the gap
have constant velocity, i.e. the material in this region
moves as a solid plug. The azimutal velocity profile for the
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same values as Figure 2 is presented in Figure 3. The
magnitude of velocity Ivl expressed as equal to

,,/ 2 *2 . . N
Vz + Vg is plotted against the radial position in

Figure 4.

Comparisons were made for increasing flow rate. In-
spection of Figures 5,6, and 7 indicates that only cases I
and III will happen with increasing flow rate. The effect of
increasing Casson number is shown in Fi gures 8,9 and 10.

Theoretical prediction of viscosity profile in the annu-
lar gap is presented in Figure 11. Viscosity goes through a
peak in the annular gap. The location of this peak is
dependenton the value of M. Incase Il at one point we have
T="1T, but in case Il there are two points of discontinuity
for viscosity profile.

In Figure 12, effective pressure profile for a constant
flow rate has been presented. In Figure 13, effective
pressure gradient has been shown versus volumetric flow
rate, for two values of momentacting on the inner cylinder.
For a constant value of M*, o increases with Q’ and has
nonlinear behaviour for low values of Q, whereas for a
Newtonian fluid o is proportional to Q" Furthermore, o
decreases as M* increases for small values of Q. Effective
radial pressure gradient profile for the same values as in
Figure 12ispresented in Figure 14. As M* decreases, radial
pressure gradient decreases near the inner cylinder.
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Figure 1. Total shear stress-total shear rate relation
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Figure 2. Axial velocity profile for a constant flow rate
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Figure 3. Azimutal velocity profile for a constant flow rate
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Figure 4. Total velocity profile for a constant flow rate
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Figure 5. Axial velocity profile for a constant flow rate
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Figure 6. Azimutal velocity profile for a constant flow rate
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Figure 7. Total velocity profile for a constant flow rate
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Figure 8. Axial velocity profile for a constant flow rate
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Figure 9. Azimutal velocity profile for a constant flow rate
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Figure 11. Viscosity profile for a constant flow rate

O, W=U, ' =S
18 a=0.6 , Q=0.00005. 10 18.03 Req.= 10

16.03
14.03 | —0—— Case |, M*=107
12.03
10.03 ——t—— Case |, M*=143

8.03 | — o casell, M*=179
8.03

4.03 | —®— Case lll, M"=40925
2.03

0.03

08 0.7 0.8 0.9 1

¥

Figure 12, Effective radial pressure gradient profile for a constant flow rate
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Figure 14, Effective pressure profile for a constant flow rate
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