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Abstract

The thermodynamic properties of two-dimensional Ising-type models of
albite predict that the low albite/high albite transition occurs continuously with
temperature. First, a nearest-neighbor Ising model is used to calculate the
thermodynamic properties accurately. The value of the excess entropy obtained
is very close to values found by other approximate calculations (for the same
model) at low temperatures but differs at high and especially at intermediate
temperatures. Within various approximate calculations for the model, these
differences are a few percent at low temperatures where the low albite is the
stable phase. At high temperatures, where high albite is the stable phase, the
entropy calculated by the approximate methods differs from the present result
by as much as 10 percent. At intermediate temperatures (where the transition
occurs) the calculated entropy of the present work differs from the previous
results by 20 to 30 percent at the same temperature. Comparison of the
calculated order parameter with experimental results suggests that the nearest-
neighbor Ising-type model is not an appropriate model for albite. Second, we
assumed that the site preference energy depends linearly on p (the fraction of
T,, sites occupied by Al atoms), a fairly good agreement is found with
experimental results. The excess thermodynamic properties are calculated and
compared with those given by the Landau theory.

Introduction

Summer 1995

Recently, a statistical-mechanical approach was
used to calculate an accurate configurational entropy
of the two-dimensional model of albite [1] introduced
by Andersen and Mazo [2] which we shall refer to as 1
in this paper. This approach is called the "independent
basic unit" or "IBU" [1]. In comparison with the exact
values, IBU gives very accurate results for
thermodynamic properties of the one-dimensional
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model of albite [1]. In the IBU approach, the sites are
artificially divided into two arbitrary, alternating
groups of "solid" and "nonsolid" in such a way that the
nearest-neighbor sites of each solid site are all
nonsolid sites and vice versa. A solid (nonsolid) site is
a position which is occupied by a unit, and a unit is a
square that includes one Al, three Si, and one Na
atoms. The number of distributions of units among
solid and nonsolid sites are calculated accurately
under the usual constraints of Al-Al avoidance and
local charge neutrality. The goal of this work is to use
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the results given in I to calculate the thermodynamic
properties of the model.

In a classical Ising model, the lattice distortions
(the site preference energy J in the case of albite) is
effectively ignored and is replaced by one average
- number which is chosen to reproduce the experimental
observations. We shall first use the model with
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nearest-neighbor interactions only to see what average

value (if any) can be assigned for J. However, because
albite shows a large elastic excess energy due to the
Al, Si ordering process (Salje et al. [3]), we do not
expect the nearest-neighbor Ising-type model to be

appropriate for Na-feldspar. For this reason, we have

then taken into consideration the long-range crystal
interactions, by assuming that the site preference

-energy is a function of Al, Si ordering (Mazo [4},

Senderov [5]).

Equilibrium State Considering the Nearest-
Neighbor Interactions : _

~ In order to find the equilibrium state, the free
energy, with respect to configuration, must be
minimized. The reduced Helmholtz free energy is
' glven by

AINET =E/NET/S/Nk

. where the reduced configurational energy, E/NkT, is
given by E = pJN where J(J < 0) is the site preference
energy and is defined for the energy of an Al atom on
the T, site, N is the total number of units, and p is a
parameter related to the order parameter, Q,,, as (see

D

By using. the result given in I for the
configurational entropy, we obtain the following
expression for the free energy:

AINKT =p U/ET)-(I/N) 3, 3. [1n @+ 1n g (S (1)
LI

where J/KT is the reduced site preference energy and
g; is the number of ways to distribute the allowed
units among specific types of nonsolid sites belonging

to the basic units with Z; configurations, and g (S) i is

the number of ways for distribution of units among
solid sites, given by
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where A,= 1,4,=12, 2, =54, 4, = 106, and 4, = 81.
As shown in I, g;; is given by

(AQiN/2)!

_— 3
TT (%0i miN/2)!

8ij=

where each m represents one of the allowed units for
the specific ij pair and m;; is the probability that such
nonsolid sites are occupied by this specific allowed
unit. /‘L is the multiplicity for the ij pair.

In order to obtain the equilibrium state, the
function A/NKT is minimized in such a way that the
following constraints are satisfied. The constraints can
be categorized into two groups: the first group is
concerned with the occupation of nonsolid sites by the

“allowed units given in Tables I through V (in I). The

second group is concemed with the occupation of the
solid sites. _

The sum of the probabilities that each specific type
of nonsolid site (with more than one allowed unit) is
occupied by its allowed units has to be equal to one,

-the first group of constraints is then given by the

general formula,

Y mij=1 4)

where each m represents one of the atlowed units for
each ij pair. Such a constraint must hold for each row
(j) of Tables I-V (in I), in which their nonsolid sites
are available for more than one unit. Therefore, Eq. 4
represents 11, 11, 9, 5, and 1 constraints for the basic
unit with Z,, Z, Z,, Z; and Z, configurations,
respectively. Hence there are 37 constraints in the first
group. The constraint. which belongs to the second
group may be obtained by using the fact that the total
number of basic units with any configuration must add
up to N/2. This constraint is given by,

Qs+ -12Q3+54Q2+ 1060, ‘."81Qo= 1 &)

The parameter p can be obtained in terms of the Qs
and A; iS- The number of A units on solid sites, N,4(S),
is gnven by, .
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Table I. The values of m; i in terms of x=exp (J/KT) at the ethbrxum state
considering the nearest-neighbor interactions only.

j Ay B, C; Dy
1 (1+3x)7 x(1 +3x)1! o ox(1+3x)! x(1 +3x)!
2 (1 + 21 x(1+ 221 x(1+ 2051 P
3| @+2n x(1+ 207 0 x(1 +2x)°
4 (1 + 2x)! 0 “x(1 + 2x)t x(1 + ) |
5 0 173 1‘/3 13-
6 A +x)! x(1 +x)! 0 0
7 (1 +x)1 0 (1 +x)1 0
8 (1 +x)y! 0 0 x{1 +JC)“1
9 0 172 1‘/2 | 0
10 0 ; 12 0 1/2
11 0 0 1/2 | 172
Na(S)= (If4) YiAOiN2 "This mean's that there is a total of 38 constraints, given
: by Egs. 4 and 5, that have to be taken into account
. when the free energy is minimized. The minimization
=(N/2)[Qa+903+270,+(53/2)01]  (6) is done by using Lagrange multipliers as follows:

The number of A units on the nonsolid sites, N, (N),
is given by,

Ns(N)= E z ﬁeinjQiN/Z

j o
=(N2) [Qo (A1 +4Amn+ 5A03 +4A0a+SA0e+4A07+ SAos

+5)+01 (BA11+8A12+ 10A13+8A1a+TA 16+ 8417+ T A
+4)+ (s (4«421 +6An+ 5423+ 6A24+3A2+ 84+ 34

+2)+03(2A3n+2Au+A3c+4A37+ Az + Qs Aa7] Y

’ On the one hand, the total number of A units in the
lattice is equal to N4(S) + N,(N), and on the other
hand it is equal to pN. Therefore, the parameter p is
given by

=(1/N) [N4(S) + N, (N)] ¥
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Let us define the function ¢’ as,

¢= P(f/kT)"'(l/z)Z Z Z l;szqln (mlj)

i jom
+(1/8) (Qaln (Q4) + 1205 11 (03) + 5402 1n Q1) +

106 Q1 1n (Q1) +81Q0 1n (Q0)} - Z 2 a(Zm-1) (9)

i j

where the o;;s are the undetermined multipliers. The
prime on ¢’ simply shows. that constraint 5 is not
included. The last term is an abbreviation for 37
constraints given by Eq. 4. In order to find the
equilibrium state, the partial derivative of ¢’ will first
be taken with respect to the m,;s, and then set equal to
zero. Therefore, at this stage, where we are calculating
d¢’/om;; , the inclusion of the constraint 5 makes no
difference and for this reason it is now dropped. The
partial derivative of the funcuon ¢’ with respect to m
is given by -
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Table II. Calculated thermodynamic properties for the two-dimensional model of albite and values of
different parameters appearing in Eq. 20 for the free energy, for some given values of the site preference
energy, considering the nearest-neighbor interactions only.

(J/IKT) | -A/NKT | S/Nk P O 102} 103 O Q x
0.0 1.065 1.065 250 003 003 004 .004 004 1
10 | 1.091 1.064 264 .003 004 004 004 .003 905
20 1119 1.061 289 007 006 .005 .004 .003 819
25 | 1.133 1.059 296 007 .006 005 004 003 778
33 | 1.159 1.053 318 012 007 005 004 002 17
40 | 1181 1.048 333 014 .009 005 .004 002 670
50 | 1.215 1.038 353 014 012 005 004 .002 607
67 | 1279 1.008 406 040 014 006 003 .001 513
75 | 1314 992 429 047 017 006 003 .001 472
1.0 1.432 916 516 110 024 006 .002 001 368
1.5 1.735 687 699 336 032 004 .001 0 223
2.0 2,122 A47 837 622 024 001 0 0 135
2.6 2.654 249 925 840 012 0 0 0 074
3.0 3.029 176 951 .909 .006 0 0 0 .050
3.6 3.609 .108 972 956 002 0 0 0 027
40 4.004 075 982 974 001 0 0 0 018
4.6 4,581 059 983 977 ] 0 0 0 010
9¢'/0m=(1/2) 2Qi(1 + 1n my) - o5 (10) depend on m';, it follows from Eq. 11 that

where m’ = B, C, and D (not A). If we set 9¢'/0m’; = 0,
we get

Inmij=-1+Bi;

1D
where
Bi=06i/(Ai1Q:/2 )
At the equilibrium state, Eq. 11 holds for each of
the allowed units m (except A) for each pair of ij given

in Tables I-V (in I}, in which their nonsolid sites are
available for more than one unit. Since B; does not

172

Bij=Cyj=D;; (12)
Now we take the derivative of ¢’ with respect to A;
(note that p is a function of the A,s, see Equation 14 in

D.

3¢/OAG=(1/2) AyQi UIKT) +(1/2) A Qilln (A +11- 0
=(/DX;QilU/KT) + 1n (Ap +1 - By} (13)

If we substitute f, = 1+ In (m',) (from Eq. 11) into

Eq. 13, we find thé following result for the
equilibrium state as well:
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Table II1. Same as the previous table for given values of Jo/ kT, when the long-range interactions are

included.
Jo/kT | -A/NKT | S/Nk p Q. Q, Q, 0, Qs x
0 1.065 1.065 250 .003 .003 .004 .004 .004 1
10 1.065 1.065 256 004 .004 .004 .004 .003 966
20 1.065 1.064 263 .004 .004 004 004 .003 929
30 1.066 1.064 272 .005 005 004 .004 003 .889
40 1.067 1.062 282 .006 .005 .004 004 .003 846
.50 1.068 1.060 294 .008 006 .005 .004 .003 799
.60 1.070 1.056 309 010 .007 005 .004 .002 745
.70 1.073 1.049 329 014 .008 005 .004 .002 683
.80 1.078 1.036 359 022 .011 006 004 002 607
50 1.084 1.003 413 043 015 006 .003 .001 S01
95 1.090 .949 481 .083 .021 .006 .002 001 406
1.00 1.106 587 162 A57 .029 .003 0 0 183
1.05 1.136 441 .841 626 024 .001 0 0 135
1.10 117 356 .881 723 019 .001 0 0 109
1.20 1.251 250 926 .836 012 0 0 0 077
1.30 1.337 185 950 .898 .008 0 0 0 057
1.32 1.355 174 953 .907 .007 0 0 0 054
JIKT - 1n (m"/A;) =0 (14) can be expressed in terms of x only. For example,
consider the case of j=1in Tables I-III (i= 0, 1,2 of
or I), in which A, B, C, and D are allowed units. We
have,
mi;=xA; (15
B, =C; =Dy = x4, amn
where
x = exp (JIkT) (16) and
By means of Eqs. 12 and 15, the probabilities for Ay +By+C+D; =1 (18)

the allowed units of each ij pair given in Tables I-V
(in I) can be expressed in terms of A, and x. Owing to
the fact that there is a (normalization) relationship

among A;, By, C;; and Dy, all of these probabilities

From the combination of Eqs. 17 and 18 the
probabilities A;;, B;;, C;;, and D;; may be expressed in
terms of x as
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Ay =1/(14+30)
By =x/(1+3x)
Ca ;x/(l +3x)
Dy =x/(1+3%)

- By using a similar argument all values for m; can be

a9
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expressed in terms of x only The results are glven in .

© Tablel,

The probabﬂmes m; (Table 1) are substituted in
Eq. 3, and the resultmg combinatorial factors 8 are
substituted in Eq. 1. The reduced free energy is then
obtained in terms of Os and x. The followmg result is
obtained:

ANKT = pJ/KT + (1/8) {Q41n (Q9) + 120511 (Qy)
+540,1n (©;) + 1060, 1n (Q;)‘+ 810,11 (00))
+(112) {(4Q, + 80, + 40;) [3xln (x)/ (1 + 31)
| ; —-*lrz(1+3x)]+(13Q0+26Q1+17Q2MQ3) [2¢1n(x)/(142x)

J.8ci. 1.R. Iran

resulting entropy is compared with those obtained by
using the independent pairs and sites or IPS (6] and

-the modified sequential construction method or

MSCM [7] for the same model as shown in this
figure,

Equilibrium State Considering the Long-Range
Interactions

In the previous section, an Ising-type model with
the nearest-neighbor interactions only was used to
calculate the thermodynamic properties of the lattice.

- Such a model is appropriate if an average value can be

“in(1+ 2]+ (IZQO +80)) (-1n3) + (14Q, + 22Q1 :

+ 14Q2 + 6Q3 + Q) [xln (/1 + x) In (1 +x)]
+ (230, + 260, + 8Q2) (- 1n2)}

- . The probabilities A;; are substituted in Eq. 7, and
the resulting equation along with Eq. 6 is substituted

in Eq. 8. The parameter p is then obtained in terms of
the Qs and x. The result is given by

2p=0,+90;+ 27Q2 + (53'/2) o+

Qo4+ 30+ 131+ 20) + 14/(1 + 1) + 5] +

Q0

0, [8/(1+3) + 26/(1+ 20 + 22 /(1 4+ x) + 41+ -

0, [4/(1430)+ 17/(1+20 + 14/(1+ D + 2] +

0, [4/(1 + 20+ 6/(1+x)] + O /(1+x) (21

In order to find the equilibrium state of the lattice,

- the free energy given in Eq. 20 has to be minimized in
such a way that the constraints given by Eq. 5 (which

has not been taken into account) and Eq. 21 are

satisfied. The calculated results are given in Table II.

~ The: calculated values (from IBU) for the
; configurational entropy are given in Figure 1. The

assigned for the site preference energy so that the
experimental observations can be reproduced. We may
compare our calculated parameter p(J/kT) with thye’
experimental value (given as a function of
temperature) of Stewart er al. [8]. Therefore, we have
p(T) from experiment and p(J/kT) from our
calculation. For the same value of p, we have

P(T) = p(JIET") 22)

B ‘1.2 " Y Y -y T

[ X 3

10k
08p

0B

S/R

04 b

O.D‘ & i P 3 " .'_
0 1 2 3 4

kT

Figure 1. The reduced molar configurational emmpy SIR

- versus the reduced temperature -kT/J obtained by IBU (m),

IPS (a), and MSCM (®) approaches for the model ‘with the
nearest-neighbor interactions only.
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where T’ is any given T at which the equation is
satisfied. The value of J at T’ can be obtained by
using Eq. 22. The result is plotted in Figure 2. As
shown in this figure, the site preference energy
strongly depends on temperature, especially around
770 K, where most of the ordering process takes place.
Therefore, the change of the site preference energy
with respect to temperature is so large that it makes it
impossible to attribute a reasonably constant value to
J. In fact, such a result is to be expected, because Na-
feldspar shows a large elastic excess energy due to the
Al Si ordering process (Salje [9] and Salje, et al. [3]).

To include the lattice distortion in the model, the
long-range crystal interactions (governed by Coulomb
forces) have to be taken into account. Such
interactions may be taken into account by considering
the site preference energy to be dependent on p. For
J(p) no exact function is known, but a linear function
has been used by Mazo [4] and Senderov [5]. We use
J(p)=4J, (p - 0.25)/3 which was introduced and used
by Mazo [4], where J, is a constant whose value is
chosen to obtain good agreement with experiment.

The configurational energy then is given by

E=[4Jyp (p-0.25)/3IN 23)
The expressions for the entropy and constraints given
in the previous section remain unchanged.

To obtain the equilibrium state we have to
minimize the new expression for the free energy,
which differs from the previous one in the energy term
only, with respect to configuration such that the
constraints given by Egs. 4 and 5 are satisfied. The
result, which is given by Eq. 12 for the equilibrium
state, will be obtained again because of the fact that
the energy term of free energy does not depend on m';
(see Egs. 6, 7, 8, and 23). However, 0¢"/0A,; becomes

9104 ;= (1/2) Ay; Q; [(4/3) (Jy/kT) (2p - 0.25)]
+(12) Ay Q; [1n (A + 1] - oz | (24)

Combination of Eq. 24 with Eq. 11 leads to the
following resuit for the equilibrium state

m'l Ay =exp[4/3 (Jy/kT) 2p-0.25)] (25)

where m’'=B=C=D (not A) is the same as before, We
should redefine x = m’; / A;; (Eq. 15) as
x=exp [(4/3) (Jo/ kT) 2p - 0.25)] (26)

Such redefinition leads to the same functions for Ay,
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B;, Cy,and Dy in terms of x as those given in Table L.
Therefore, to obtain the equilibrium state, Eq. 20 has
to be minimized subject to constraints given by Eqs..5
and 21, except that the energy term has to be replaced
by that given by Eq. 23. However, we need to include
one more constraint, which is the new definition for x
in terms of the site preference energy given by Eq. 26.
The calculated equilibrium-state properties are given
in Table III, also the calculated p parameter is
compared in Figure 3 with the case when the site
preference energy is assumed to be independent of the
parameter p.

In order to present the calculated properties in
terms of temperature, the value of J, must be known.
We may obtain the value of this quantity by assuming
that the equilibrium state of the model corresponds to
that of the lattice when p(J, / kT) from our calculation
is equal to p(T) given by experiment (Stewart et al.
[8]. Since the calculated p against KT/J, has a steep
slope at the point (p = 0.75, kT/J, = -1) (see Figure 3),

20 " 1 v 13 Wl ¥

-J, kJ mol?

1000 1400

T.K

0
600 800 1200

Figure 2. Site preference energy as a function of
temperature by comparing the calculated and experimental
values of the parameter p (an attempt to find an average
constant number for J according to the nearest-neighbor
classical Ising model).
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and a similar behavior can be seen from the
experimental data at the point (p = 0.75, T = 773 K)
(see Figure 6 of Stewart et al. [8]), we consider these
points to correspond to the same equilibrium state.
Therefore, we may conclude that at 773K, £T/J, = -1,
or Jy/k = <773 K, and therefore the temperature (in
Kelvin) for any equilibrium state of the model 1is
simply given by T = 773 (-kT/J,).

We can now present the calculated parameter p in
terms of T and compare it with the experimental
values (Stewart er al. {8]). Such a presentation is given
in Figure 4, in which the result obtained by using a
Landau-type theory is also included (Salje [9] and
Salje et al. {3]). Our result shows fairly good
agreement with the experimental data. The excess
entropy and energy obtained by the IBU and the
Landau theory (Salje et al. [3]) are given in Figures 5
and 6, respectively. An excess quantity at a given
temperature is defined as the difference between that
quantity at such temperature with that of the high-
temperature limit (T - o).

1.2 y | p— T

02 > H e L . i i i i i

-kT/I

Figure 3. The parameter p versus -kT/J for the case that J is
independent of p (W and versus -kKT/J, when J varies
Hinearly with respect to p ().

Parsafar

176

J. Sci..R. Iran

Conclusion and Discussion

The result in I, obtained by applying the
independent basic unit approach to the two-
dimensional model of Andersen and Mazo [2], has
been used in this work to calculate the thermodynamic
properties of albite. First, the nearest-neighbor
interactions are taken into consideration. The resulting
entropy is compared with values obtained by the
independent pairs and sites (IPS, [6]) and the modified
sequential construction method (MSCM, [7]) for the
same model. At very low temperatures, at' which low
albite is the stable phase, the configurational entropy
calculated by IBU is almost the same as those
obtained by IPS and MSCM. At high temperatures, at
which high albite is the stable phase, the results are
different but the differences are less than 10%. Such
differences are due to the aluminum avoidance rule.
At intermediate temperatures (especially around AT/
= -0.6) at which the transition takes place, the
differences are between 20 to 30 percent (see Figure
1). This is due to the fact that both the phase transition

1.2 T Y T

08 r h

04 r -

0.2

400 1600

800
TK

1200

Figure 4. The parameter p versus temperature given by
experiment (0), independent basic unit (O), and Landau
theory (W)
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and the aluminum avoidance have profound effects on
the system, and the ability of earlier approaches to
handle such a complicated system is limited.
Therefore, we may conclude that some factors, such as
the phase transition and the aluminum avoidance
limitation have important effects on the
thermodynamic properties of the system, and that
using approximate methods may lead to significant
ITOrS.

Our next concern has been to see how appropriate
the nearest-neighbor Ising model is for albite. This
model would be justified if a constant value of the site
preference energy could reproduce the experimental
observations. Figure 2 shows that the site preference
energy is so temperature dependent that it is
impossible to assign a single constant value to J.
Therefore, we may conclude that such a model is not
appropriate for Na-feldspar. Such a conclusion is
expected due to the fact that lattice distortions in albite
are significant (Salje et al. [3]).

We have included the lattice distortions in the

20

-ds, J K-1 mol-!

- i

800 1000 1400

T.K

0
400 600 1200

Figure 5. Excess entropy dS versus temperature given by
IBU (m) and Landau theory (0)
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model by considering the site preference energy as a
function of the parameter p. For this function, we used
the linear expression suggested by Mazo [4]. On
including this function, the ordering process of the
system, with respect to temperature, shows a
remarkable change, so that (in comparison, with the
case that only the nearest-neighbor interactions are
considered) the disordering of low albite by raising the
temperature begins at a higher T, and once it starts, the
disordering is very much faster, i. e. dp/dT is much
greater in absolute value when transition occurs (see
Figure 3).

By including the site preference energy as a
function of p, we found a fairly good agreement with
experimen{ (see Figure 4). The calculated excess
entropy and energy are compared with those obtained
by Salje et al. [3] in Figures 5 and 6, respectively. The
temperature dependence of the excess functions given,
by both approaches (IBU and Landau theory) are very
similar. The main differences are related to the T-axes,
and such differences are due to the fact that the result

10

-dE, kI mol-!

L i i

600 800 1200 1400

T.K

3}
400 1000

Figure 6. Excess energy dE versus temperature given by
IBU (m) and Landau theory (5
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given by the Landau theory predicts that the most
significant ordering process (the largest slope in
Figure 4) occurs at a higher temperature (by 150K)
than those given by IBU and experiment (see Figure
4).
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