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- Abstract
In this paper, we develop two piecewise polynomial methods for the numerical

evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewise-
polynomial quadratures are compact, easy to implement, and are numerically stable.
Two numerical examples are presented to illustrate the two rules developed. The
convergence of the two schemes is proved and some error bounds obtained.

1. Introduction
In this paper, we are concerned with the numerical
evaluation of Cauchy principal value integrals of oscillatory
kind of the form

b
1(w,s)=[ﬂ;-_&s@-dy,wzo,?=~1, a<s<b (1)

a

where g(y) is analytic in a<y<b and g(s) = 0.
The integral, as noted in [8 has two practical problems. It
is oscillatory and has a singularity of Cauchy type. The
numerical evaluation of integrals of this type has wide
applications in applied mathematics, physics and
engineering. For more information on methods of
evaluating integrals of this form, you may see, [5,6,7.9,
10j for examples.

We consider two low-order quadrature rules for the
numerical evaluation of (1) which are implicitly the
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modified trapezium and Simpson's rules. In [8] the present,
one author has chosen the node points as the zeros of an
orthogonal polynomial but, global methods are not
appropriate for integrals with input functions that behave
poorly in some interval [tj, tj+1} of [a, b). Therefore, for
such integrals, a numerical method with no restriction on
the choice of points would be more appropriate to use in
orderto concentrate the nodes in [a, b]. This is not possible
with the global methods. In contrast, local methods based
on piece-wise polynomial quadratures afford a flexible
choice of the node points.

We give error expressions for the two methods and
consequently prove their convergence and give their error
bounds.

2. Preliminaries
2.1. A Well-Known Result
We define the Cauchy principal value of the integrand
0
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2)



J.Sci. IR Iran

and assume that r(?) is analytic in g < ¢ < b. It is well
known [7] that under these conditions the integral

b
ny
L X

existsforall xina < x <b.
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2.2. Lagrange Interpolation Formula
Given n+1 distinct points x, X in{a, b], there is
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a polynomlal L, (fx) of degree < n that interpolates a

function f{x) at x i=0,1,.
L, #9=3 10w
0

.., which we may express as:

@

and where the polynomials I(x), the lagrange coefficients,
are given by: :

”n X .
L= 1;[ G i=0,1,

The proof of this important result is given by Atkinson
[2, p. 132] and the interpolation error expressed as:

f@ - E L(x) FO) = {ex0) Coxy)... (-2 f(ml)(o G’<C<b )

(n+1)!
©

3. Methods
3.1. Linear Piecewise Polynomial Quadrature Rule
Suppose we set h= —ﬁand definey, =a+rh,r=0,1,

e M ThenletthesetX—(yo,y,, -¥,} bethe space of n+1
knots in [a, b]. Then, a linear interpolant in any interval

[v,. 5, < la, b] which approximates g(y) is given by:

) -y
0r 3 2 Gy 0T

Then, substituting this for g(y) in (1), we have
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Thus, after aseries of simplification and rearrangement,
we obtain the approximate rule

nl
Liwss)= (;-’-‘;s) ; bleGr+ ) - gynje
+qr [+ h-9) gD +(s-y) 8O+ h)

U
where
p=Zen(eh) @®
% (2y+1) ©)
4
iy
4= ] 22 ay (10)

A sufficient condition for the existence of g, is that ¢

is Holder continuous in every open subinterval of [g, b}, a
condition satisfied by the function £»,

Re{qr}=cosws cltire1) - SN WSS {tp1) + sint wsS{1y) ~ cos wsCluy)

(11
Im{q,] = cos wsS{un1) +sin wsClums) - COS WSS 1) - Sn wsCluy)
(12)

where
Uy=w(yr- 8); Urt =W+ b - 8). (13)

C, and S, are the cosine and sine integrals respectively
and may be expressed in the following integral forms
[1, Equations 5.5.1, 5.2.27].

S = ] snt gg C(z)r:-f OSL gt
et I (14

These also have the series expansions [1, Equations

5.2.14,5.2.16]

o ke2kH ‘
=3 €D
0= go(zk-a-l) (1) 13
COv= yrinxsy (16)
k=1 (2Kk) (2Kk)!
where 1y is Euler's constant.
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- Thus, inview of (7),(8),(9),(11),0r (12), (13),(15)and
(16) we may be able to approximate (1) numerically.
- Observe that, unlike the algorithms in [8], no modification
is feasible in Equations (11) and (12) when any of the
nodes coincides with s, say if y, = s. For in this case, we
might be required to evaluate C, (0), which is undefined.
However, thereis asunpleremedy, vary nand hapethamc
other node coincides with s.

The rule (7) is simple and computationally efﬁcxent to
use. In the numerical computation of S, and C, we have
usedﬂietmncatedsumsof(lS)and(lé)mﬂnnanmeptable
tolerance.

3.2. Proof of Convergence
- Following [3], let

gn(y)*g 3)’,”*3 DI o)+ (y(:; U9 o), 3 <y <ym

be the approximating sequence {g_(y)}to g(y). Then the :
error can be expressed as

. )
- Edgwo)=| (g-g») €2 dy
L -9
Hence, : ‘
Engws) I<lg - g A1B1
where

= fl@f"; @

<h[s=s]

- Suppose lig~ g Il <W(g;h)is the modulus of continuity
ofg which is defined as W (gh=maxig(x)-g (.x,)i /x,

-xigh forany x, x, € [a, b].

Then, , :
IEAgw:I< Wigs) bS]
- But, since g is continuous, W (g;h)—>0 as k — 0.

Thus, |Edgwis)—0 asn—eo

Moreover, ifweassume thatg(y) € C?g, blandusethe

~errorformula for Lagrange interpolation (6), we canobtain
the following error bound.

|Egwrs)] .—.l.i /
2 =0 yr
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3.3. Quadratic Piecewise Polynomial Quadrature Rule
Suppose we divide the interval [a, ] into 2n equal -

parts. Define y, = a + jh, j=0,1, ..., 2n, h= b-ﬁl
Usmgthelagmngemterpolaﬂonfomuia,d&equadranc‘

polynomial in the interval [y2j-2, y2i], which interpolates
8(y) at the points y2j-2, y2j-1, and y2j can be expressed as

ol
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where
Du:%&m(wz)-z-sh (wh) sin (wyz-1)

+26: y’” ) m(wh)cos(wyz, )

+5%&mqm;g+§;m () 00 (wyzp1) +
225D g ok sin ooyl + G5~ ) G- “WF;
Daj=Lhsin (wyzp2) - Zosinuh) siniwys)
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2s- y;):z,i-z) sn (wh) sin (Wyy-1) 1+ (5- y-2) (s- y0F;

Dsj=2h costwh) sn(wyz1) - Zsn(wh) sin(wyze)
w
+262% gn0m) coswyyn
+i- 28 costwh) costwy) +-“%2-sin(wh) cos(wyz1) +

225D g ok s (wyge) 1+ 5-72:9) -3y DF.

m :
=" e
Fi jmy_sdy. (18)

Re[F J=coswsC (u,)-sinwsS (u,)+sinwsS(u,, ,)-
coswsC(u,.,) 19

Im{F j]=c0swss Au, J.)+sin wsC ( uz}.)~coswsS‘,( Uy )-
sinwsCfu, ) 20

where

U, =0, - 9); 1)

j g = W0y, -5)

3.4. Proof of Convergence
Let

2,0)= O-») 0@ -2)’21)8022) G-y (Y; Y2080
2h h
O-y52) O - 1080

" + WiSySyp

be the approximating sequence {g, ()} to g(»).
Suppose we set the error due to the rule as
b

Ezn(gzw)=1 (g-gzn)}‘?%dy

It is shown [3] that lig-g, Il < i-W(g;Zh).
Thus, in view of this result we have

|Esdged <2 W g2k nfo=s]

Since g is continuous, W(g;2h)—>0ash -0

Furthermore, assume that g™ € Cla, b]. In view of (6), we
can show and obtain the error bound

Btz 9| s Lm0 -0y wizsletmve @b
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4. Two Numerical Examples
We present here two numerical examples to illustrate
the two rules hitherto derived.
(@) Consider the following integral taken from [8).
1
Im(10,-13) = | snxsin 10xdx
.  xX+13
Applying the quadrature rule (7) to this integral and
making use of Equations (8-9, 12-15), we obtain the
results:

n 1(10,-.13)
10| -.136327872536
14| -.136327866384
18| -.136327866153

Exact value: -.136327866164
(b) Again, consider from [8] the integral

1

Im(12,0) = ] ﬁg%.zm
- J1
We applied the rule (17) to this integral and obtained
n 1(12,0)
8 2.92914006215
10 | 2.92914005321
12 | 2.92914005409

Exact value: 292914005409

5. Conclusion
Two low-order quadrature rules have been derived for
the numerical evaluation of Cauchy principal value
integrals of oscillatory kind. Two numerical examples are
presented to illustrate the implementation of the two rules.
The convergence of the two schemes was proven and some
error bounds also obtained.
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