DERIVATIONS OF TENSOR PRODUCT OF SIMPLE C*-ALGEBRAS ## M. Mirzavaziri¹ and A. Niknam² ¹Department of Mathematics, Damghan University, Damghan, Islamic Republic of Iran ²Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, P. O. Box 1159-91775, Islamic Republic of Iran #### **Abstract** In this paper we study the properties of derivations of $A \otimes_{\gamma} B$, where A and B are simple separable C^* -algebras, and $A \otimes_{\gamma} B$ is the C^* -completion of $A \otimes B$ with respect to a C^* -norm γ on $A \otimes B$ and we will characterize the derivations of $A \otimes_{\gamma} B$ in terms of the derivations of A and B. #### 1. Introduction A C*-algebra A is said to be a uniformly hyperfinite C*-Algebra (UHF algebra) if there is an increasing sequence $\{A_n\}$ of finite type-I subfactors (i. e. finite dimensional full matrix algebras) such that $t \in A_1 \subseteq A_2 \subseteq A_2 \subseteq ...$, where t is the identity of A and the uniform closure of Und A is A. Let A be a UHF algebra and $t \mapsto \alpha$ be a strongly continuous one-parameter group of *- automorphisms on A (for a full definition in detail, one can see example [4]). The system $\{A,\alpha\}$ is called a C^* dynamics with A. A C*-dynamics $\{A,\alpha\}$ is said to be approxiamately inner if there is a sequence $\{h_i\}$ of selfadjoint elements in A such that $(1 - \delta_{ihn})^{-1} \rightarrow (1 - \delta)^{-1}$ strongly, where $\alpha_i = \exp(t\delta)$ and $\delta_{ihn}(x) = i [h_n, x]$. Powers and Sakai have conjectured that any C^* -dynamics $\{A,\alpha\}$ with a UHF algebra A is approximately inner (see [4], 4. 5. 9). If $d: A \bigotimes_{\gamma} B \to A \bigotimes_{\gamma} B$ is a derivation, where A and B are C^* -algebras and $A \bigotimes_{\gamma} B$ is the C^* -completion of $A \bigotimes_{\gamma} B$ with respect to a C^* -norm γ on $A \bigotimes_{\gamma} B$, then we can write **Keywords**: Simple C^* -algebra; Tensor product of C^* -algebras; UHF algebra; A-derivation; Compatible derivation AMS subject Classification (1997): 46L57 ¹E-mail: vaziri@science2.um.ac.ir $d(x \otimes y) = d((x \otimes \iota)(\iota \otimes y)) = d(x \otimes \iota)(\iota \otimes y) + (x \otimes \iota) d(\iota \otimes y)$, where ι is the identity of A (in $\iota \otimes y$) or the identity of B (in $x \otimes \iota$). This motivates us to consider $d(x \otimes \iota)$ and $d(\iota \otimes y)$ and study the properties of this component restrictions. We add precision to these notions in the following and find the relations between them. In the following, A and B are simple C^* -algebras with a countable basis. We know that each simple C^* -algebra A has the property $A'=C_1$, where A' is the center of A and ι is the identity of A (see[2]). ## 2. Preliminaries **Definition 2.1.** A linear map $\delta: D(\delta) \rightarrow A$, where $D(\delta)$ is a dense subalgebra of A, is called a *derivation* if for each $x, y \in D(\delta), \delta(xy) = \delta(x)y + x \delta(y)$. It is called a *-derivation if it also satisfies $\delta(x^*) = \delta(x)^*$. For a fixed element a $\in A$, we can define $\delta_a: A \rightarrow A$ by $\delta_a(x) = [a,x] = ax - xa$. It can be shown that δ_a is a derivation. A derivation δ is called an inner derivation if $\delta = \delta_a$ for some $a \in A$. A derivation δ is called approximately inner if it is the limit of a sequence of inner derivations. **Definition 2.2.** A linear map δ_1 : $D(\delta_1) \rightarrow A \otimes_A B$, where $D(\delta_1)=A$, is called an A-derivation with respect to $A \otimes_A B$ if it satisfies $\delta_1(xz)=\delta_1(x)(z\otimes t)+(x\otimes t)\delta_1(z)$. It is called a*-A-derivation with respect to $A \otimes_A B$ if it also satisfies $\delta_1(\delta(x^*)=((x))^*$. Analogously a linear map $\delta_2:D(\delta_2)\rightarrow A$ ²E-mail:niknam@science2.um.ac.ir. \bigotimes_{A} , where $D(\delta_{2})=B$, is called a B-derivation with respect to $A\bigotimes_{A}B$ if it satisfies $\delta_{2}(yw)=\delta_{2}(y)(\iota\bigotimes_{A}w)+(\iota\bigotimes_{A}y)\delta_{2}(w)$. It is called a*-B-derivation with respect to $A\bigotimes_{A}B$ if it also satisfies $\delta_{2}(y^{*})=(\delta_{2}(y))^{*}$. **Example 2.1.** Let $c \in A \bigotimes_{\beta} B$ and define $\delta_1: A \to A \bigotimes_{\beta} B$ by $\delta_1(x) = \delta_c(x \bigotimes_{\iota}) = [c, x \bigotimes_{\iota}] = c$ $(x \bigotimes_{\iota}) - (x \bigotimes_{\iota}) c$. Then δ_1 is an A-derivation with respect to $A \bigotimes_{\beta} B$, which we call it an inner A-derivation with respect to $A \bigotimes_{\beta} B$. Moreover, if c is self-adjoint then $i \delta_1$ is a*-A-derivation with respect to $A \bigotimes_{\beta} B$, which we call an inner*-A-derivation with respect to $A \bigotimes_{\beta} B$. **Difinition 2.3.** Let δ_1 and δ_2 be A-derivation and B-derivations with respect to $A \bigotimes_{\mathcal{P}} \mathcal{B}$, respectively, then δ_1 is said to be compatible with δ_2 if the map $d: A \bigotimes_{\mathcal{P}} \mathcal{B} \to A \bigotimes_{\mathcal{P}} \mathcal{B}$ defined by $d(x \bigotimes_{\mathcal{P}}) = \delta_1(x)(t \bigotimes_{\mathcal{P}}) + (x \bigotimes_{\mathcal{P}}) + (x \bigotimes_{\mathcal{P}}) + (x \bigotimes_{\mathcal{P}}) = \delta_1$ and δ_2 are the first and the second component restrictions of d, respectively. **Example 2.2.** Let $c \in A \otimes_{\gamma} B$ and $\delta_1(x) = \delta_c(x \otimes t)$ and $\delta_2(y) = \delta_c(t \otimes y)$. Then δ_1 is compatible with δ_2 and we have $\delta_1(x) (t \otimes y) + (x \otimes t) \delta_2(y) = \delta_c(x \otimes y)$. **Example 2.3.** Let ζ and ξ be two derivations of A and B, respectively. Then δ_1 $(x)=\zeta(x)\otimes\iota$ is compatible with δ_2 $(y)=\iota\otimes\xi$ (y), since $d=\zeta\otimes I_B+I_A\otimes\xi$ is a derivation of $A\otimes_{\gamma}B$, where I_A and I_B are the identity maps of A and B, respectively (see[3]). **Lemma 2.1.** δ_1 is compatible with δ_2 if and only if $\delta_{(x \otimes i)}$ $(\delta_2(\delta_2(y)) = \delta_{(x \otimes y)}(\delta_1(x))$ for each $x \in D(\delta_1)$ and $y \in D(\delta_2)$. **Proof.** Let δ_1 be compatible with δ_2 . Then $d(x \otimes y) = \delta_1(x)$ $(\iota \otimes y) + (x \otimes \iota) \delta_2(y)$ is a derivation of $A \otimes_{\gamma} B$. Now we have $$d(x \otimes y) = d((x \otimes \iota)(\iota \otimes y)$$ $$= (\delta_1(x)(\iota \otimes \iota) + (x \otimes \iota) \delta_2(\iota)) (\iota \otimes y) +$$ $$(x \otimes \iota) (\delta_1(\iota)(\iota \otimes y) + (\iota \otimes \iota) \delta_2(y))$$ $$= \delta_1(x) (\iota \otimes y) + (x \otimes \iota) \delta_2(y)$$ on the other hand $$d(x \otimes y) = d((\iota \otimes y)(x \otimes \iota))$$ $$= (\delta_{\iota}(\iota)(\iota \otimes y) + (\iota \otimes \iota) \delta_{\iota}(y)) (x \otimes \iota) + (\iota \otimes y) (\delta_{\iota}(x)(\iota \otimes \iota) + (x \otimes \iota)\delta_{\iota}(\iota))$$ $$= \delta_{\iota}(y) (x \otimes \iota) + (\iota \otimes y) \delta_{\iota}(x).$$ Hence $$\delta_{1}(x) (\iota \bigotimes y) + (x \bigotimes \iota)\delta_{2}(y) = \delta_{2}(y) (x \bigotimes \iota) + (\iota \bigotimes y) \delta_{1}(x).$$ And so we have $$\delta_{(x \otimes y)}(\delta_2(y)) = \delta_{(x \otimes y)}(\delta_1(x)).$$ Conversely if $\delta_{(x \otimes \iota)}(\delta_2(y)) = \delta_{(\iota \otimes y)}(\delta_1(x))$ then $d(x \otimes y) = \delta_1(x)(\iota \otimes y) + (x \otimes \iota) \delta_2(y)$ is a derivation of $A \otimes B$, since $$d((x \otimes y)(z \otimes \omega)) = d(xz \otimes y\omega)$$ $$= \delta_1(x)(z \otimes y\omega) + (x \otimes t) (\delta_1(z)$$ $$(t \otimes y) + (z \otimes t)\delta_2(y))(t \otimes \omega) + (xz \otimes y)\delta_2(\omega).$$ But $\delta_1(z)$ $(\iota \otimes y) + (z \otimes \iota) \delta_2(y)$ $\delta_2(y)$ $(z \otimes \iota) + (\iota \otimes y)$ $\delta_1(z)$. So we have $d((x \otimes y)(z \otimes \omega)) = (\delta_1(x)(\iota \otimes y) + (x \otimes \iota) \delta_2(y))(z \otimes \omega) + (x \otimes y) \delta_1(z)(\iota \otimes \omega) + (z \otimes \iota) \delta_2(\omega)$. And the requirment is met. \Box **Difinition 2.4.** If δ_1 and δ_2 are compatible with δ_1 , then we say that δ_2 is δ_1 -compatible to δ_2 and we write $\delta_2 = \delta_2$ (mod δ_1). We denote the set of *B*-derivations compatible with δ_1 by $[\delta_1]_B$. **Lemma 2.2.** Let $c \in A \bigotimes_{\beta} and for each <math>x \in A, \delta_{(x \otimes 0)}(c) = 0$. Then $c = 1 \bigotimes_{\beta} b$ for some $b \in B$. Moreover $\delta_2 = \delta_2' \pmod{\delta_1}$ if and only if for some derivation ξ of B, $(\delta_2 - \delta_2')(y) = 1 \bigotimes_{\beta} \xi(y)$ for each $y \in B$. **Proof.** Let $c = \sum_{j=1}^{\infty} aj \otimes bj$, where bj's are linearly independent. Now we have $$0=\delta_{c}(x\otimes\iota)=\sum_{j=1}^{\infty}\delta_{aj}(x)\otimes bj.$$ This implies $\delta_{aj}(x) = 0$ for each $x \in A$, so aj is in the center of A which is equal to C_i . Thus $aj = \alpha ji$ for some complex number $$\alpha j$$. Hence $c = \sum_{j=1}^{\infty} \alpha j i \otimes b j = i \otimes (\sum_{j=1}^{\infty} \alpha j b j) = i \otimes b$ where $b = \sum_{j=1}^{\infty} \alpha j b j$. To prove the second assertion of the Lemma, we have $\delta_{(u\otimes y)}(\delta_2(y)) = \delta_{(u\otimes y)}(\delta_1(x)) = \delta_{(u\otimes y)}(\delta_2(y))$. We can therefore deduce that $\delta_{(x \otimes y)}(\delta_2(y) - (\delta_2(y)) = 0$ for each $x \in A$. Thus $\delta_2(y) - \delta_2(y) = i \otimes b_y$, for some $b_y \in B$. But we have $$\begin{split} \iota \bigotimes b_{y\omega} &= \delta_2(y\omega) - \delta'_2(y\omega) \\ &= (\delta_2(y) - \delta'_2(y))(\iota \bigotimes \omega) + (\iota \bigotimes y)(\delta_2(\omega) - (\delta'_2(\omega))) = \iota \bigotimes (b_y\omega + yb\omega). \\ \text{Hence } b_{y\omega} &= b_{y\omega} + yb_{\omega}, \text{ and we may take } \xi(y) = b_y. \ \Box \end{split}$$ **Lemma 2.3.** Let δ_1 be an A-derivation with respect to $A \otimes_{\bullet} B$ and there is an inner B-derivation δ_2 in $[\delta_1]_B$. Suppose that each derivation of B is inner. Then each B-derivation $\delta_2 \in [\delta_1]_B$ is inner. Let δ_1 be an inner A-derivation with respect to $A \otimes_{\bullet} B$ and each derivation of B is inner. Then there is an inner B-derivation with respect to $A \otimes_{\bullet} B$, say δ_2 , such that δ_1 is compatible with δ_2 . Moreover, each B-derivation $\delta'_{2} \in [\delta_{1}]_{B}$ is inner. **Proof.** We have $(\delta_2 - \delta'_2)(y) = \iota \bigotimes \xi(y)$ for some derivation ξ of B. But $\xi = \delta_b$ for some $b \in B$ and we have $(\delta_2 - \delta_2)(y) = \iota \bigotimes \delta_b(y) = \delta_{(\iota \bigotimes b)}(\iota \bigotimes y) = 0$. Now since δ_2 is inner, there is a $c \in A \bigotimes B$ such that $\delta_2(y) = \delta_c(\iota \bigotimes y)$. Thus $(\delta_2)(y) = \delta_2(y) = \delta_{(\iota \bigotimes b)}(\iota \bigotimes y) = \delta_{(\iota \bigotimes b)}(\iota \bigotimes y)$. This proves the first part of the Lemma. Now if $\delta_1(x) = \delta_c(x \otimes t)$ for some $c \in A \otimes \beta$, then we may put $\delta_c(y) = \delta_c(t \otimes y)$. \square Remark 2.1. We can easily extend the above Lemma to the case of approximately inner derivations. Remark 2.2 We may extend the above notion, inductively, to finite tensor product $\bigotimes_{j=1}^{n} A_j$, and we may define A_j -derivation with respect to $\bigotimes_{j=1}^{n} A_j$. Moreover we can extend this to infinite tensor product $\bigotimes_{j=1}^{\infty} A_j$. We finish this section with the following Theorem of Sakai (see[4]) which helps us prove our main result. Note that we say δ is a derivation on A whenever $D(\delta)=A$. **Theorem 2.1.** Every derivation on a simple C*-algebra is inner. ### 3. Results We now aim to characterize the derivations of $A \otimes_{\mathcal{A}} \mathcal{B}$ in terms of the derivations of A and B, but prior to that we characterize the A-derivations with respect to $A \otimes_{\mathcal{A}} \mathcal{B}$. **Theorem 3.1.** Let $\{ej\}_{j=1}^{\infty}$ and $\{f_j\}_{j=1}^{\infty}$ be two bases for A and B, and δ_1, δ_2 be A-derivation and B-derivations with respect to $A \bigotimes_{j} B$, respectively. Then there are sequences $\{\zeta_j\}$ and $\{\xi_i\}$ of derivations of A and B, respectively, such that δ_1 $$(x)=\sum_{j=1}^{\infty}\zeta_{j}\otimes f_{j}$$, and $\delta_{2}(y)=\sum_{j=1}^{\infty}e_{j}\otimes \xi_{j}(y)$. **Proof.** We write $\delta_1(x) = \sum_{j=1}^{\infty} \zeta_j \otimes f_j$, where $\zeta_j(x) \in A$. Now for each $x, z \in D(\delta_1)$ we have $$\delta_1(xz) = \delta_1(x)(z \otimes t) + (x \otimes t)\delta_1(z).$$ So $\sum_{j=1}^{\infty} (\zeta_j(xz) - (\zeta_j(x)z + x \zeta_j(z))) \otimes f_j = 0.$ And since f_i s are linearly independent, we have $$(\zeta_i(xz)=(\zeta_i(x)z+x\zeta_i(z)).$$ By the same argument we can show $\delta_2(y) = \sum_{j=1}^{\infty} e_j \otimes \xi_j$ (y) for some sequence $\{\zeta_j\}$ of derivations of B. \square **Theorem 3.2.** Suppose that $\delta_1(x) = \zeta(x) \otimes b$ is an Aderivation with respect to $A \otimes \beta$, where ζ is a derivation $[\delta_1]_B$ of A and b is an element of B. Let also $[\delta_1]$ is non-void. Then ζ is approximately inner or $b = \beta i$ for some $\beta \in C$. **Proof.** Let $\delta_2 \in [\delta_1]_B$, and $\{e_j\}$, $\{f_j\}$ be two bases for A and B, respectively. By the above Theorem we can write δ_2 (y)= $\sum_{j=1}^{\infty}e_{j}\otimes\xi_{j}(y)$ for some sequence $\{\zeta_{j}\}$ of derivations of B. Now by Lemma 2.1 we must have $\delta_{(x\otimes)}\delta_{2}(y)=\delta_{(x\otimes)}(\delta_{i}(x))$. Hence $$\zeta(x) \otimes \delta_b(y) = \sum_{j=1}^{\infty} \delta_{e_j}(x) \otimes \xi_j(y).$$ We write $\xi_i(y)\sum_{k=1}^{\infty} \alpha j k(y) f_k$, where $\alpha_{jk}(y) \in \mathbb{C}$. Thus $$\zeta(x) \bigotimes \delta_{b}(y) = \sum_{j=1}^{\infty} \delta_{ej}(x) \bigotimes \sum_{k=1}^{\infty} \alpha_{jk}(y) f_{k}$$ $$= \sum_{k=1}^{\infty} (\sum_{j=1}^{\infty} \alpha_{jk}(y) \delta_{ej}(x)) \bigotimes f_{k}.$$ We can also write $\delta_b(y) = \sum_{k=1}^{\infty} \alpha_k(y) f_k$, where $\alpha_k(y) \in C$. So we must have $$\sum_{k=1}^{\infty} \alpha_{k}(y) \zeta(x) \bigotimes f_{k} = \sum_{k=1}^{\infty} (\sum_{j=1}^{\infty} \alpha_{jk}(y) \delta_{ej}(x)) \bigotimes f_{k}.$$ And since f_k 's are linearly independent, we can therefore deduce that $\alpha_k(y)\zeta(x) = \sum_{j=1}^{\infty} \alpha_{jk}(y)\delta_{ij}(x) \quad \forall \kappa \in \mathbb{N} \quad (1)$ Now if $b \notin C_v$, then $b \notin B'$ and we can find a $y \notin B$ such that $\delta_b(y) \neq 0$. This shows that $\alpha_k(y) \neq 0$ for some natural number k, and so by (†) we can deduce that $\zeta(x)$ = $$\sum_{j=1}^{\infty} \frac{\alpha_{jk}(y)}{\alpha_{k}(y)} \delta_{ij}(x)$$, which is approximately inner. \Box In the following we suppose that $\{e_j\}_{j=0}^{\infty}$ and $\{f_j\}_{j=0}^{\infty}$ are Schauder bases of A and B, where e_0 and f_0 are the identities of A and B, respectively. **Theorem 3.3.** Let δ_i $(x) = \sum_{j=0}^{\infty} \zeta_j(x) \otimes f_j$ be compatible with $\delta_2(y) = \sum_{j=0}^{\infty} e_j \otimes \zeta_j(y)$. Then ζ_j and ξ_j are inner derivations on A and B, respectively, for each $j \in \mathbb{N}$ Proof. By Lemma 2.1 we must have: $$\Sigma_{i=0}^{\infty}\zeta_{i}(x)\bigotimes\delta_{i}(y)=\Sigma_{i=0}^{\infty}\delta_{i}(x)\bigotimes\xi_{i}(y) \qquad (\dagger)$$ ¹The notation \bigotimes denotes the C^* -tensor product under a C^* -norm. for each $x \in D(\delta_1)$ and $y \in D(\delta_2)$. The left-hand side of $(\frac{1}{t})$ is defined for each $y \in A$, and hence so is the right-hand side. This shows that $\xi_j(y)$ is defined for each $y \in A$ provided that $\delta_{ej}(x) \neq 0$ for some $x \in D(\delta_1)$. But for each $j \neq 0$, we can find an $x \in D(\delta_1)$ with $\delta_{ej}(x) \neq 0$, since otherwise, if $\delta_{ej}(x) = 0$ for each $x \in D(\delta_1)$, then $\delta_{ej}(x) = 0$ for each $x \in A$, and so $e_j \in A' = Ct$, which is impossible since e_j 's are linearly independent. We can therefore deduce that ξ_j 's are everywhere defined for each $j \in \mathbb{N}$ and Theorem 2.1 implies that ξ_i 's are inner. \square For each derivation ζ of A and ξ of B, denoting by $\zeta \otimes \xi$ the derivation mentioned in Example 2.3, i. e. $\zeta \otimes \xi = \zeta \otimes I_B + I_A \otimes \xi$, we have **Theorem 3.4.** Let $d: D(d) \subseteq A \otimes_{\beta} \mapsto_{A} \otimes_{\beta} be$ a derivation. Then $d=\zeta \otimes_{\xi} +\delta$, where δ is an approximately inner derivation of $A \otimes_{\beta} b$. **Proof.** Let δ_1 and δ_2 be the first and the second component restrictions of d, respectively. By the above Theorem we can write $$\delta_{i}(x) = \zeta(x) \otimes \iota + \sum_{j=1}^{\infty} \delta_{a_{j}}(x) \otimes f_{j}$$ where $a_j \in A$. Define δ_2 by $\delta_2(y) = t \bigotimes \xi'(y) + \sum_{j=1}^{\infty} a_j \bigotimes \delta_{jj}(y)$, where ξ' is an arbitrary derivation of B. Then $\delta'_2 \in [\delta_1]_B$, because if $d'(x \bigotimes y)$ $$=\delta_1(x)(i \otimes y)+(x \otimes i)\delta_2(y)$$, then $d'(x \otimes y)=(\zeta \otimes \xi')$ $$(x \otimes y) + \sum_{j=1}^{\infty} \delta(a_j \otimes f_j)(x \otimes y).$$ Now= $\sum_{j=1}^{\infty} \delta(a_j) \otimes f_j$ is an approximately inner derivation of $A \otimes_{\gamma} B$ and we have $d' = \mathcal{L}(x) \otimes \mathcal{E}' + \delta$. But since $\delta_2 = \delta'_2 \pmod{\delta_1}$, by Lemma 2.2 there is a derivation ξ'' of B such that $\delta_2 = \delta_2 + \iota \bigotimes \xi''$, so we have $$d(x \otimes y) = \delta_1(x)(\iota \otimes y) + (x \otimes \iota)\delta_2(y)$$ $$= d'(x \otimes y) + \otimes \xi''(y))$$ $$= ((\zeta \otimes (\zeta' + \xi'')) + \delta)(x \otimes y)$$ Putting $\xi = \xi + \xi''$ completes the proof. **Corollary 3.1.** If the derivations of A and B are approximately inner, then so are the derivations of $A \otimes_{\mathcal{B}} B$. Remark 3.1. Powers and Sakai have conjectured that each strongly continuous one-parameter group of*-automorphisms of a UHF algebra is approximately inner. In [1] it is shown that the conjecture can be reduced to a certain UHF algebra A_{∞} , namely the Glimm algebra of rank $\{s(n)=p_1...p_n\}$, where p_j is the j-th prime number. The above Corollary helps us to reduce the conjecture again to the UHF algebras A and B with $A \bigotimes_{p} = A_{\infty}$ But $A_{\infty} = \bigotimes_{j=1}^{\infty} M_{pj}$, where Mp is the matrix algebra of $p \times p$ matrices over C. This motivates us to extend our results to the case of countable tensor product of simple C^* -algebras. #### References - Mirzavaziri, M. and Niknam, A. Reducing the conjecture of Sakai to a certain UHF algebra. Unpublished. Presented in 29th Annual Conference on Mathematics. - Murphy, G. J. C*-algebras and operator theory. Academic Press. London, New York, (1990). - Niknam, A. Infinitesimal generators of C*-algebras. Potential Analysis, 6, 1-9, (1997). - Sakai, S. Operator algebras in dynamical systems. Cambridge University Press, (1991).