## ASSOCIATED PRIME IDEALS IN C(X)

### A. A. Mehrvarz<sup>1</sup> and K. Samei<sup>2</sup>

<sup>1</sup>Department of Mathematics, University of Tabriz, Tabriz, Islamic Republic of Iran <sup>2</sup>Department of Mathematics, University of Bu-Ali Sina, Hamadan, Islamic Republic of Iran

### **Abstract**

The minimal prime decomposition for semiprime ideals is defined and studied on z-ideals of C(X). The necessary and sufficient condition for existence of the minimal prime decomposition of a z-ideal I is given, when I satisfies one of the following conditions: (i) I is an intersection of maximal ideals. (ii) I is an intersection of  $O^x$ , s, when X is basically disconnected. (iii)  $I = O_x$ , when  $x \in X$  has a countable base of neighborhoods. (iv) I is finitely generated. (v) I is countably generated, when X is compact and countable of first kind.

### 1. Preliminaries

The minimal primary decomposition is defined for an ideal in commutative ring R with unit and it is proved that whenever R is Noetherian, then every ideal is decomposable [see 8]. Let I be a z-ideal in C(X). For every  $F \in C$ , Ann (f+I) is a z-ideal. We also know that every primary z-ideal is prime. Hence for a z-ideal I, we study the prime decomposition instead of the primary decomposition. We know that every z-ideal is an intersection of prime ideals, hence it has a prime decomposition which may not be minimal. The Theorem (2.2) shows that if S is a prime decomposition of I, this decomposition is minimal if and only if Ass(R/I)=S. Of course, if C(X) is Noetherian, then every z-ideal is decomposable. But C(X) is Noetherian if and only if X is finite and this is very special. We generalize this concept for general spaces. In this paper, R is assumed to be commutative with an identity. C(X)=C denotes the ring of continuous functions from the completely regular space X into R, the reals. For  $f \in C$ , Z(f) denotes the zeros of f.

Let I be a (proper) ideal in C. The family  $Z[I] = \{Z(f):$ 

Keywords: Prime decomposition; Annihilator; Essential ideal; Socle

E-mail: Samei @ sadaf.basu.ac.ir

 $f \in I$  is a z-filter: all finite inter-sections of members and all zero-sets c

ontaining members, are members, and  $\emptyset$  is not a member. Every ideal is contained in at least one maximal ideal [5].

If  $\cap Z[I]$  is nonempty, I and Z(I) are fixed; else, free. The fixed maximal ideals are the sets  $M_p = \{f: p \in Z(f)\}$  for  $p \in X$ . More generally, maximal ideals, free or fixed, are the sets

$$M_p = \{f : p \in cl_{\beta,r} Z(f)\} \ (p \in \beta X)$$

where  $\beta X$  is the stone- Cech compactification of X, and "cl" denotes colsure in  $\beta X$ . Related to these are the ideals  $O^P = \{f: cl \ Z(f) \ is \ neighborhood \ (in \beta X) \ of \ p\}$ .

If  $p \in X$ ,  $M^p = M_p$ ; if  $p \in \beta X - X$ , then  $M^p$  and  $O^p$  are free.  $M^p$  is the unique maximal ideal containing  $O^p$ . Every prime ideal  $\subseteq M^p$  contains  $O^p$  [5].

The ideal  $(f_{e^t}, ...)$  generated by the functions  $f_{e^t}$  ... is the smallest ideal containing every  $f_{e^t}$ ; it consists of all finite sums  $\sum_k s_k f_{ok}$ , where  $s_k \in C$ . Also for any ideal I, we define

$$\theta(I) = \{ p \in \beta X : M^p \supset I \}$$

Let I be an ideal of R. A prime ideal P in R is called an associated prime ideal of R/I, if P is annihilator of some  $a + I \in R/I$ . The set of associated primes R/I is written Ass(R/I) and the set of all minimal prime ideals containing I is written by Min(R/I). In fact

$$Min(R/I) = \{P \in Spec(R): P/I \text{ is minimal in } R/I\}$$
  
 $Ass(R/I) = \{Ann_p (a+I): a \in R\} \cap Spec(R)$ 

A nonzero ideal in R is said to be essential if it intersects every nonzero ideal nontrivially and the intersection of all essential ideals is called the socle.

### 2. Minimal Prime Decomposition

**2.1. Definition.** Suppose I is a semiprime ideal in  $R(i.e. I=\sqrt{I})$  and  $S \subseteq Min(R/I)$ . If I=P,  $\bigcap$  then S is called  $p \in S$ 

a prime decomposition of I. Also, if for every  $P \in S$ ,

 $\bigcap P' \not\subset P$ , we shall say that S is minimal prime  $P \in S(P)$ 

decomposition of I and I is called decomposable.

**Remark.** We know that every semiprime ideal is an intersection of prime ideals, hence Min(R/I) is a prime decomposition of a semiprime ideal I.

The following proposition shows the relation between associated prime ideals and the minimal prime decomposition.

# **2.2. Proposition.** Let I be a semiprime ideal and S be a prime decomposition of I. Then

i)  $Ass(R/I) \subseteq S$ . Furthermore, equality holds if and only if the decomposition is minimal.

ii) 
$$P \in Ass(R/I)$$
 if and only if  $\bigcap_{P \in S(P)} P' \not\subseteq P$ .

**Proof.** (i) Suppose  $P \in Ass(R/I)$ , hence there is  $a \in R$  such that P = Ann(a+I). Therefore, P = Ann(a+I) = Ann(a+I)

$$\bigcap_{P' \in S} Ann(a+P') = \bigcap_{a \notin P'} Ann(a+P') = \bigcap_{a \notin P'} P', so P \subseteq \bigcap_{a \notin P'} P'.$$

Thus, there is  $P' \in S$  such that P'=P, hence  $Ass(R/I) \subseteq S$ . Equality follows from (ii).

(ii) Assume 
$$P \in S$$
 and  $\bigcap_{P \in S \setminus \{P\}} P' \subseteq P$ , so there is

 $a \in \bigcap_{P \in S(P)} P' - P$ . Hence P = Ann(a+I) implies  $P \in Ass(R/I)$ 

and (
$$\Leftarrow$$
) holds. Now suppose  $P \in Ass(R/I)$ . If  $\bigcap_{P \in S \setminus \{P\}} P' \subseteq P$ , then  $S' = S \setminus \{P\}$  is prime decomposition of  $I$ . Hence by (i),  $Ass(R/I) \subseteq S'$  and this is impossible.

**2.3.** Corollary. The minimal prime decomposition of every semiprime ideal in the case of existance is unique. In fact, if S is the minimal prime decomposition of I, then S=Ass(R/I).

### 3. The Intersection of Maximal Ideals

In this section we obtain Ass(C/I), where I is an intersection of maximal ideals.

**Definition.** Let A be a subspace of X and  $A_0$  be the set of isolated points of A and  $A_0 = cl_{\beta x}A_0 \cap A$ . If  $A = A_0$ , we say A is an almost discrete space.

The following theorem states a necessary and sufficient condition for existence of minimal prime decomposition for z-ideals which are an intersection of maximal ideals.

Theorem 3.1. Suppose  $A \subseteq \beta X$  and  $I = \bigcap_{x \in A} M^x$  then

 $Ass(C/I) = \{M_{\star} : x \in A_{\delta}\}.$ 

Furthermore, I is decomposable if and only if A is almost discrete.

**Proof.** Suppose  $a \in A_0$  and  $A_1 = A - \{a\}$ , hence there is a closed set F in  $\beta X$ , such that  $A_1 \subseteq F$  and  $a \notin F$ . So there is  $f \in C(X)$ , such that f(a) = 1 and  $A_1 \subseteq F \subseteq cIZ(f)$ .

Therefore,  $f \in \bigcap_{x \in A_1} M^x - M^a$ , hence  $\bigcap_{x \in A_1} M^x \subset M^a$  and (2.2)

shows that M = Ass(C/I). So  $\bigcirc$  holds. Now suppose  $P \in Ass(C/I)$ , by (2.2) there is  $a \in A$  such that  $P \subseteq M^a$ .

Hence  $a \in A_0$  (For if  $a \in A_0$ , then for every  $f \in \bigcap_{x \in A_1} M^x$ ,

 $a \in A_1 \subseteq clZ(f)$ . So  $\bigcap_{x \in A_1} M^x \subseteq M^a$  implies  $I = \bigcap_{x \in A_1} M^x$ . Thus

again by (2.2),  $P \subseteq M^x$ , for some  $x \in A_1$ , a contradiction.) Therefore  $P = M^a \in Ass(C/I)$ . For the second part we suppose I is decomposable, hence by (2.2), Ass(C/I) is

the minimal prime decomposition of I and  $I = \bigcap_{x \in A_0} M^x$ .

Let  $a \in A$ , if  $a \notin A_0$ , so there is a function  $f \in C(X)$  such

that f(a) = 1 and  $A_0 \subseteq clZ(f)$ . Therefore,  $f \in I = \bigcap_{x \in A_0} M^x$ 

and  $f \in M^a$ , hence  $\underline{I} \not\subseteq M^a$  and this is a contradiction. Hence,  $a \in \overline{A_0}$ , i.e.,  $\overline{A} = \overline{A_0}$ . Conversely, assume  $A_0$  is dense

in A and  $f \in \bigcap_{x \in A_0} M^x$ . Now  $A_0 \subseteq cIZ(f)$ , hence  $A = A_0 \subseteq cIZ(f)$ 

clz(f) so  $f \in I$ . Therefore,  $I = \bigcap_{x \in A_0} M^x$  and this means that

Ass(C/I) is the minimal prime decomposition of I.

**Example.** Let X be a discrete and infinite space and let  $X^*$  be the one-point compactification of X, then every ideal of  $C(X^*)$  which is an intersection of maximal ideals is decomposable.

**3.2. Corollary.** Suppose X is a *P-space* and I is an ideal of C(X). Then I is decomposable if and only if  $\theta(I)$  is almost discrete.

**Proof.** The proof is immediate for  $I = \bigcap_{x \in R(I)} M^x$  by [5].

It is easy to see that every finitely generated z-ideal *I* is a principal ideal generated by an idempotent. The following theorem characterizes finitely generated z-ideals which has the minimal prime decomposition.

**3.3. Theorem.** For every finitely generated z-ideal I=(f), we have:

 $Ass(C/I) = \{M^x : x \text{ is isolated in } cl_{\beta x} Z(f)\}.$ Furthermore, I is decomposable if and only if clZ(f) is almost discrete.

**Proof.** We note that  $clZ(f) = \theta(I)$ . We now prove that

$$I = \bigcap_{x \in \Theta(I)} M^x$$
. To see this, suppose  $g \in \bigcap_{x \in \Theta(I)} M^x$ . Hence  $cl_{\beta x}$ 

 $Z(f) \subseteq cl_{\beta_x} Z(g)$ . So  $Z(f) \subseteq Z(g)$  (If  $x \in Z(f)$  and  $x \notin Z(g)$ , there is a neigborhood U of x in  $\beta X$  such that g is nonzero on U, but  $x \in clZ(g)$  and this is a contradiction.) Hence

$$g \in I = (f)$$
. So  $I = \bigcap_{x \in C[I]} M^x$  and by Theorem (3.1) the proof

is complete.

The following proposition follows from (3.3) and [1]. Next, we give more proof of this fact.

### 3.4. Proposition. We have

$$Ass(C) = \{M: x \in X \text{ and } x \text{ is isolated}\}.$$

**Proof.** First we suppose that  $x \in X$  is an isolated point, so there is a  $g \in C$  such that g(x) = 1 and  $g(\{x\}^C) = 0$ , then  $M_x \subseteq Ann(g)$ . But  $1 \not\in Ann(g)$  and this means that  $M_x = Ann(g)$ . So  $M_x \in Ass(C)$ . Conversely, suppose  $P \in Ass(C)$ , then there is  $0 \neq g \in C(X)$ , such that P = Ann(g). Since  $X - Z(g) \subseteq Z[P]$  and P is prime, then  $X - Z(g) = \{x\}$ , for some isolated point  $x \in X$ . This implies that  $P = M_x$  and the theorem is proved.

The equivalent conditions (i) - (iv) of the following proposition is proved in [2] and [7]. We add some nore equivalent conditions.

- **3.5. Proposition.** For a topological space *X*, the following are equivalent:
  - (i) The In-topology on C is Hausdorff.
  - (ii) If S is the Socle of C, then Ann(S) = 0.
- (iii) Every intersection of essential ideals of C is an essential ideal.
  - (iv) The set of isolated points  $X_0$  of X is dense in X.
  - (v) (0) is decomposable.
- (vi) E is essential ideal in C if and only if for every  $P \in Ass(C)$ ,  $E \subseteq P$ .

**proof.**  $(iv) \Leftrightarrow (v)$  Since  $(0) = \bigcap_{x \in X} M_x$ , hence by (3.1) the proof is trivial.

### 4. The intersection of Ox, s

In this section, we study associated prime ideals, decomposablity of  $O^x$  and the intersection of  $O^x$ , s. In [4] some ideals which are an intersection of  $O^x$ , s, have been identified. In particular, if I is countably generated z-

ideal and  $\theta(I)$  is a zero-set, then  $I = \bigcap_{x \in \theta(I)} O^x$ . We first give

a theorem about the decomposability of  $O_x$  when  $O_x$  is countably generated. It is well know that  $O_x$  is countably generated if and only if  $x \in X$  has a countable base of neighborhoods, see [5].

**4.1. Theorem.** Suppose  $x \in X$  has a countable base of open neighborhoods and  $O_x = M_x$ , then  $Ass(C/O_x) = \emptyset$ . Furthermore  $O_x$  is decomposable if and only if  $O_x = M_x$ .

**Proof.** Suppose  $P \in Ass(C/O)$ , we show that there is  $f \in$ M - O, such that P = Ann(f+O). In order to see this, first we suppose  $O_r$  is not prime, then there is  $f \in C$  such that  $P = Ann (f+O) \not\subseteq O$ . If  $x \notin Z(f)$ , there is a open neighborhood U of x such that  $U \cap Z(f) = \emptyset$ , on the other hand, there is  $g \in Ann(f+O_1) - O_1$  and open neighborgood  $V ext{ of } x ext{ such that } x \in V \subseteq U, V \subseteq Z(fg). ext{ Since } Z(f) \cap V = \emptyset.$ hence  $V \subseteq Z(g)$ , therefore  $g \in O$ , which is impossible, so  $f \in M_x - O_x$ . Also, if  $O_x$  is prime, obviously for every  $f \in M_1 - O_2$ , we have  $P = Ann(f + O_2)$ . Now by our hypothesis there is a countable base of open neighborhoods for x such as  $\{U_n\}$  such that for each  $n \in \mathbb{N}$ , we have  $U_{n+1} \subseteq U_n$ . Suppose  $x_i \in U_i - Z(f)$  and replacing  $k_i = 1$ , there are open neighborhoods  $V_1$  of  $x_1$  and  $U_{p_1} \in \{U_n\}$  such that  $V_1 \subseteq U_{p_1}$ and  $V_1 \cap U_{n} = \emptyset$  and f on  $V_1$  is nonzero. Also there is  $x_2 \in U_{k2}$  - Z(f) and open neighborhoods  $V_2$  of  $x_2$  and  $U_{\mathcal{B}} \in \{U_n\}$  such that  $V_2 \cap U_{\mathcal{B}} = \mathcal{Q}, V_2 \subseteq U_{\mathcal{B}}$  and f on  $V_2$ is nonzero. Continuing this process, there are sequence  $\{x_n\}$  and increasing sequence  $\{k_n\}$  and open neighborhoods  $V_n$  of  $x_n$  and  $U_{kn}$  such that  $x_n \in U_{kn} - \mathbb{Z}(f)$ ,  $U_{kn+1} \cap V_n = \mathbb{Z}$ ,  $V_n \subseteq U_{kn}$  and f on  $V_n$  is nonzero. It is evident that for each m = n,  $V_m \cap V_n = \mathbb{Z}$ . Therefore, there are functions  $\varphi_n$ ,  $\psi_n \in \mathbb{C}$  such that

$$\varphi_n(X - V_{2n}) = 0, \ \varphi_n(x_{2n}) = \frac{1}{2^n}, \ 0 \le \varphi_n \le \frac{1}{2^n}$$

$$\psi_n(X - V_{2n-1}) = 0, \ \psi_n(x_{2n-1}) = \frac{1}{2^n}, \ 0 \le \psi_n \le \frac{1}{2^n}$$

Now letting  $\varphi = \sum_{n=1}^{\infty} \varphi_n, \psi = \sum_{n=1}^{\infty} \psi_n$ , it is apparent that  $\varphi$ ,  $\psi \in C$  and  $\psi \varphi = 0$ . But  $\varphi \notin P$ , for if  $\varphi \in P$ , then there is some n such that  $V \subseteq V_{2n} \subseteq Z(\varphi f)$ , so  $x_{2n} \in Z(\varphi f)$ , a contradiction. The same proof shows that  $\psi \notin P$ , so P is not prime and this is a contradiction. Therefore  $Ass(C/O_p) = \emptyset$ .

**Remark.** This condition that  $x \in X$  has a countable base of neighborhood in Theorem (4.1) is necessary for a counter example, suppose  $X = D \cup \{\infty\}$  where D is a discrete space and  $\infty$  is the only nonisolated point of X, then X is a finite union of closed basically disconnected subspaces if and only if  $M_{\infty}$  contains only finitely many minimal prime ideals of C(X) such as  $P_1, P_2, ..., P_n[9]$ . In fact,  $Ass(C/O_{\infty}) = \{P_1, P_2, ..., P_n\}$ , by Proposition (2.2).

The following result was proved in [5] and [6]. We also obtain this as a consequent of our result.

**4.2.** Corollary. Suppose  $x \in X$  has a countable base of neighborhoods, then  $O_x$  is prime if and only if x is isolated.

**Proof.** (4.1) and [5].

- **4.3.** Corollary. If  $x \in X$  has a countable base then every prime ideal in  $C/O_x$  is essential.
- **4.4.** Corollary. Suppose  $x \in X$  has a countable base of neighborhoods and  $O_x$  is not prime, then
  - (a) O can not be a finite intersection of prime ideals.
- (b) the number of minimal prime ideals containing  $O_x$  is infinite.

Next, we state the necessary and sufficient condition for the existence of the minimal prime decomposition for z-ideal  $I = \bigcap_{x \in A} O_x$  ( $A \subseteq \beta X$ ) when X is basically disconnected. But first we need the following lemmas.

**Lemma 4.5.** Suppose I, J are z-ideal,  $I \subseteq J \subseteq P$  and  $P \in Ass(C/I)$ , then  $P \in Ass(C/J)$ .

**Proof.** There is  $f \in C$  such that P = Ann(f+I). Since  $f \notin P$ , hence  $f \notin J$ , therefore  $P \subseteq Ann(f+J)$ . Now if  $g \in Ann(f+J)$ , then  $gf \in J \subseteq P$  implies  $g \in P$ , hence  $P = Ann(f+J) \in Ass(C/J)$ .

**4.6. Lemma.** Suppose  $A \subseteq \beta X$  and  $I = \bigcap_{x \in A} O^x$ , then Ass(C/A)

 $I) \subseteq \bigcup_{x \in A} \operatorname{Ass}(C/O^{x}).$ 

**Proof.** Let  $P' \in Ass(C/I)$ , since  $I = \bigcap_{p \in Min(CO^2), x \in A} P$ , hence by (2.2) there is  $x \in A$  such that  $P' \in Min(C/O^x)$ , thus by (4.5)  $P' \in Ass(C/O^x)$ .

**4.7. Theorem.** Let X be a basically disconnected space and  $A \subseteq \beta X$ , then  $I = \bigcap_{x \in A} O^x$  is decomposable if and only if  $A_0 = A$  and for every  $x \in A_0$ ,  $O^x$  is decomposable. Furthermore, in this case

$$Ass(C/I) = \bigcup_{x \in A_0} Ass(C/O^x).$$

**Proof.** ( $\Rightarrow$ ) First we define  $A_1 = \{x \in A: Ass(C/I) \cap Ass(C/O^x) \neq \emptyset\}$ . We prove that  $A_0 = A_1$ . By (4.6) and (2.2),  $Ass(C/O^x) \neq \emptyset$ 

$$I) \subseteq \bigcup_{x \in A_1} Ass(C/O^x)$$
 and  $I = \bigcap_{P \in Ass(CI)} P$ , hence  $I = \bigcap_{x \in A} O^x$ .

Also for every  $a \in A_1$ ,  $\bigcap_{x \in A_1 - f \in A} O^x \subset O^a$  (otherwise, there is

 $P \in Ass(C/I) \cap Ass(C/O^a)$  such that  $\bigcup O^x \subseteq P$ , hence  $\underset{x \in A_1 - \{a\}}{} O^x \subseteq P$ , hence  $\underset{x \in A_1 - \{a\}}{} O^x \subseteq P$ , hence contradiction.) Hence there is  $f \in C^*$  such that  $f \in \bigcup_{x \in A_1 - \{a\}}{} O^x \subseteq P$ .

 $O^*-O^a$ , so  $A_1-\{a\}\subseteq Intcl\ Z(f)$  and  $a\notin Intcl\ Z(f)$ . But X is basically disconnected, hence by [5],  $Intcl\ Z(f)=IntZ(f^{\oplus})$  is closed, therefore a is islated in  $A_1$  and  $A_2$  is discrete.

On the other hand,  $A_1 = A$  whenever  $A_1 = clA_1 \cap A$ . Since, if there is  $a \in A - A_1$ , then exists  $f \in C(X)$  such that f(a)=1 and  $A_1 \subseteq Intcl\ Z(f)$ , therefore  $f \in \bigcap O^x - O^a$ , hence  $I = \bigcap_{x \in A_1} O^x \underline{Z} O^a$  and this is a contradiction. So  $\overline{A_1} = A$  which implies the points of  $A_1$  are isolated in A, i.e.,

 $A_1 = A_0$ . Now for every  $a \in A_0$ , we show that  $O^a = \bigcap_{P \in Ass(CD^a)} P$ ,

i.e.,  $O^a$  is decomposable. Let  $O^a$  be not decomposable, then there is  $P \in Min(C/O^a)$ -Ass $(C/O^a)$  such that

 $\bigcap_{P' \in Ass(CD^d)} P' \not\subseteq P$ . Since  $\bigcap_{x \in A_0 - \{a\}} O^x \subseteq O^a \subseteq P$ , then

 $\bigcap_{P \in Ass(CI)} P' \not\subseteq P$ , So  $P \in Ass(C/I)$ , hence  $P \in Ass(C/O^a)$  and

this is a contradiction. Therefore  $O^a$  is decomposable.

 $(\Leftarrow)$  Assume  $A_0$  is dense in A. It is observed that  $I = \bigcap_{x \in A_0} x \in A_0$ 

 $O^{x}(f \in \bigcap O^{x} \text{ implies } A_{0} \subseteq Intcl Z(f), \text{ hence } A = A_{0} \subseteq Intcl$ 

Z(f), i.e.  $f \in \bigcap_{x \in A} O^x$ ). we show that  $Ass(C/I) = \bigcup_{x \in A_0} Ass(C/I)$ 

 $O^x$ ). By (4.6)( $\bigcirc$ ) holds. For ( $\bigcirc$ ), Let  $S = \bigcup_{x \in A_0} Ass(C/O^x)$ 

and  $P \in Ass(C/O^a)$ , hence  $\bigcap_{P \in Ass(C/O^a) - \{P\}} P' \not\subseteq P$ . Also

 $\bigcap_{x \in A_0 - \{a\}} O^x \not\subseteq O^a, \text{ therefore } \bigcap_{P' \in S - \{P\}} P' \not\subseteq P, \text{ so } P \in Ass(C/I)(I)$ 

 $= \bigcap_{P \in S} P$ ). This implies that I is decomposable.

**4.8. Proposition.** Let X be a countable of the first kind,

$$A \subseteq X$$
 and  $I = \bigcap_{x \in A} O_x$ , then  

$$Ass(C/I) = \{M: x \in A \text{ and } x \text{ is isolated}\}.$$

Furthermore, if X is basically disconnected, then I is decomposable if and only if  $A_0 = A \cap X_0$ ,  $\overline{A_0} = A$ .

**Proof.** Assume  $P \in Ass(C/I)$ , hence by (4.6), there is  $x \in X$  such that  $P \in Ass(C/O_x)$ . Since X is a countable of the first kind, x is isolated by (4.1), thus  $\bigcirc$  holds. conversely, suppose  $x \in A$  is isolated. Hence there is  $f \in C$  such that

f(x) = 1 and  $f(\lbrace x \rbrace^c) = 0$ . Thus,  $\bigcap_{x \in A - \lbrace a \rbrace} O_x \not\subseteq M_a$  and (2.2) implies  $M_x \in Ass(C/I)$ .

**4.9.** Corollary. Let X be a compact and countable of the first kind space and I be a countably generated z-ideal, then

 $Ass(C/I) = \{M: x \in \theta(I) \text{ and } x \text{ is isolated}\}.$ 

Proof. [See Ref. 4].

#### References

- Azarpanah, F. Essential ideals in C(X), period, Math. Hungar, 32(2), 105-112, (1995).
- 2. Azarpanah, F. Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125, 7, 2149-2154, (1997).
- 3. Brookshear, J.G. On projective prime ideals in C(X), *lbid.*, **69**, 203-204, (1978).
- 4. De Marco, G. On the countably generated z-ideals of C(X), *Ibid.*, 31, 574-576, (1972).
- 5. Gilman, L. and Jerison, M., Rings of continuous functions, Springer-Verlag, (1976).
- 6. Kohlds, C. W. Prime ideals in rings of continuous Functions, *Illinois J. Math.* 2, 505-536, (1958).
- Karamzadeh, O. A. S. and Rostami, M. On the intrinsic topology and some related ideals of C(X), *Proc. Amer.* Math. Soc. 93(1), 179-184, (1985).
- Matsumura, H. Commutative ring theory, Cambridge University Press, (1986).
- Henriksen, M. and Wilson, R.G.Almost discrete SVspaces. Topology and its Applications, 46,89-97, (1992).