Vol.9 No.3
Summer 1998

J.Sci.I.R. Iran

QUASI-PERMUTATION REPRESENTATIONS OF
METACYCLIC 2-GROUPS

H. Behravesh

Department of Mathematics, University of Urumia, Urumia,
Islamic Republic of Iran

Abstract

By a quasi-permutation matrix we mean a square matrix over the complex field C
with non-negative integral trace. Thus, every permutation matrix over C is a quasi-
permutation matrix. For a given finite group G, let p(G) denote the minimal degree
of a faithful permutation representation of G (or of a faithful representation of G by
permutation matrices), let g(G) denote the minimal de gree of a faithful representation
of G by quasi-permutation matrices over the rational field Q, and let ¢(G) be the
minimal degree of a faithful representation of G by complex quasi-permutation
matrices. In this paper, we will calculate the irreducible modules and characters of
metacyclic 2-groups and we also find ¢(G), ¢(G) and p(G) for these groups.

Introduction
If G is afinite linear group of degree n, that is, a finite
group of automorphisms of an n-dimensional complex
vector space (or, equivalently, a finite group of non-
singular matrices of order n with complex coefficients),
we shall say that G is a quasi-permutation group if the

trace of every element of G is a non-negative rational

integer. The reason for this terminology is that, if G is a
permutation group of degree n, its elements, considered
as acting on the elements of a basis of an n-dimensional
complex vector space V, induce automorphisms of V
forming a group isomorphic to G. The trace of the
automorphism corresponding to an element x of G is
equal to the number of letters left fixed by x,and sois a
non-negative mteger. Thus, apermutation group of degree
n has a representation as a quasi-permutation group of
degree n. See [9].

Keywords: Metacyclic 2-groups; Quasi-permutation; Quasi-
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By a quasi-permutation matrix we mean a square
matrix over the complex field C with non-negative
integral trace. Thus, every permutation matrix over C is
a quasi-permutation matrix. For a given finite group G.
let p(G) denote the minimal degree of a faithfu
permutation representation of G (or of a faithful
representation of G by permutation matrices), let g(G'
denote the minimal degree of a faithful representation o
G by quasi-permutation matrices over the rational fielc
Q. and let ¢(G) be the minimal degree of a faithfu
representation of G by complex quasi-permutatior
matrices. See [1].

By arational valued character we mean a character ;
corresponding to acomplex representation of G such tha
x(g) € Qforall g € G. As the values of the character o
acomplex representation are algebraic numbers, arations
valued character is in fact integer valued. A quasi
permutation representation of G is then simply acomple:
representation of G whose character values are rations
and non-negative. The module of such a representatio
will be called a quasi-permutation module. We will ca
a homomorphism from G to GL(n, Q) a ration:
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representation of G and its corresponding character will
be called a rational character of G. It is easy to see that

o(G) £ q(G) £ p(G)

where G is a finite. group.

We state algorithms obtained eisewhere [1] for
calculating p(G), ¢(G) and c(G) where G is a finite group
with a unique minimal normal subgroup. Then we will
calculate irreducible modules and irreducible characters
of metacyclic 2-groups and we will apply the algorithms
to the metacyclic 2-groups. We will show that

o(G)= q(G)=1Z(GNIG: Z(G)I'?
if G is a finite metacyclic 2-group with cyclic center.

Algorithm for p(G), ¢(G) and q9(G)
Lemma 2.1. Let G be a finite group with a unique
minimal normal subgroup. Then p(G) is the smallest
index of a subgroup with trivial core (that is, containing
no non-trivial normal subgroup).

Proof. See [[1], Corollary 2.4].

Definition 2.2. Let y be a character of G such that, for
allge G, x(g) € Qand 2(g) 2 0. Then we say that x is
a non-negative rational valued character.

Notation. Let I'(y) be the Galois of Q) over Q.

Definition 2.3. Let G be a finite group. Let y be an
irreducible complex character of G. Then define

M dy) =10 x(D

ify=1¢

@ m@= .
|min { Sacrm2®®): g € G}| otherwise

3) ) = Taerpx*+mQ) 1,

Corollary 2.4. Let y € Irr(G). Then Taerp x” isa
rational valued character of G. Moreover c(¥) is a non-
negative rational valued character of G and c(x) (1)=

d(x) + m(2).
Proof. See [[1], Corollary 3.7].
Now we will give algorithms for calculating ¢(G) and

g(G) where G is a finite group with a unique minimal
normal subgroup.
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Lemma 2.5. Let G be a finite group with a urique
minimal normal subgroup. Then ‘

(1) ¢(G) = min {c(x) (1): xis a faithful irreducible
complex character of G1..

(2) q(G) =min {m(x)c(X) (1): xis a faithful irreducible
complex character of G}. :

Proof. See [{11, Corollary 3.11].

Lemma 2.6. Let G be a finite group. If the Schur index
of each non-principal irreducible character is equal tom,
then g(G)= mc(G).

Proof. See [{1], Corollary 3.15].

Some Facts on p-Groups
Lemma 3.1.Let G be ap-group and H < G.Let H  denote
the core of H in G. Then H = 1 if and only if Z(G) H=
1. Furthermore, if G has nilpotency class 2 and H; =1
then H is an Abelian group.

Proof. See [[1], Lemma 4.2].

Corollary 3.2. Let G be a finite p-group and p # 2. Then
mQ(x) =1 for all y € Irr(G) and ¢(G)= ¢(G).

Proof. This follows from [[6], Corollary 10.14] and
Lemma 2.6,

Lemma 3.3. Let A = <a> be cyclic of order p*. Let ¥, «
be the character of the QA-module Q(w) where w is a
primitive p*-th root of unity and a acts by multiplication
by w. Then %, s is faithful and

s-1

} P if (i, p*) = p*!
rpe@={ psip-1) =0
0 otherwise

‘Proof. This follows from [[2], Lemma 3.4].

Theorem 3.4. Let G be a finite p-group with a unique
minimal normal subgroup. Then there exists a faithful
irreducible character y. Suppose that all faithful
irreducible characters of G have degree (1) and y*(1)=
IG: Z(G)l. Then ¢(G) = x(1) IZ(G) = \Z(GIIG: Z(G)I'~.

Proof. See [[1], Theorem 4.6].
Metacyclic 2-Groups

Let G be a non-exceptional and mnon-cyclic
metacyclic 2-group. In [[7), Theorem 3.2] it is proved
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that G has a uniquely reduced presentation as <a,b: a*"=

1,7 =2, ab= a!*?> for certain integers m, n, r,s. A
presentation is uniquely reduced if and only if the
parameters satisfy the following conditions:

(a) split: 0= s < m-r<min {n+1,m};
(b) non-split: max {1, m-n+1} <s <min {m-r,r+1}.
it is known that G is an extension

19Cm—>G—Cin—1

in which A= <a> is the normal subgroup of order 2" and
G/A is generated by the image of ». In particular, if B =
<b>, then G is of order 2™*", G= AB= {a’b’: 0<i<2"-1,

~ 0gj<2-1} and A N B = <b®" = a2" > Itis the case that
G is split only in case (a), that is, only whenAnB =1.In
discussing a generic metacyclic 2-group G in what
follows, we will assume the notation above.

Lemma 4.1. Let i = 2'k, where (k,2) = 1. Then 2"

(1422’ - 1, but 27+ does not divide (142 - 1.
" Proof. It is easy to prove.
-Lemma 4.2. Let G be a metacyclic 2-group. Then

(@) G'= <a®>; ‘
(b) if a°b® € Z(G) then a*and bP are in Z(G);

(C) Z(G): <" , bzm 'r> and QZ(G)‘:' Qnmedr

Moreover if Z(G) is cyclic then
(d) Z(G) = <a?" "> and n = m-r if G splits;
(€) Z(G) = <b *™> and s = r if G does not split.

" Proof. (a): See [[3], 47.10].

(b), (¢): As G = <a,b>, a*e Z(G) if and only if a*=

b'a%b = g®"+?"), This happens precisely when o(a) =

202", that is, when 2™la.

Similarly, b € Z(G) if and only if b= a”'ba= bfb*
a'bBa = bPa 1+ P, This happens precisely when 2" 11-
(1422, Using Lemma 4.1 we conclude that b” € Z(G) if
and only if 21 B,

~ Thus, <a™, b*"> < Z(G). If a®b’ € Z(G), then apP =
b1abPh = a* 1+ )bP 50 that ¢*2" = 1 and so 2™loz. But
~ then a* e Z(G) and so b” € Z(G); this proves (b).

As Z(G)/ANZ(G) is generated by the image of >,
it is of order 2***" by the introductory material of this
section. But lANZ(G)l = 0(@*” ") = 2", Tt follows that
1Z(G)k= 2vme
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(d), (e): Since Z(G) is cyclic by hypotheSis,‘it is
generated by a®" "or by %", as follows from (c) and

the fact that Z(G) is a 2-group.
If G is split, then ANB = 1. Thus, if Z(G) = <b™">,

_then Z(G)<B and A N Z(G) = 1. But A <\G so that this

contradicts; consequently Z(G)= <q*"" >,
But then 2°™ = Z(G)i = 0(a*" " ) = 2’ 50 that n-m+2r =
rand n = m-r as stated. ‘

Let G be non-split. The order of 52" is 2***»and

the order of ™ is 2", but we know thatmax {1, m-n+1}
< 5. So m-n<s. Hence s-m+n>0, and s-m+n+r>r. So

Z(G)=< b*"”" >. From (c) we have IZ(GHl = 2% s0
Qrmalre Pmeserm Therefore s=r.

Corollary 4.3, Let G be a metacyclic 2-group and let
Z(G) be cyclic. Then, in the standard notation.

(@)if Gissplit, G=<a,b:a®" =b>"  =1,a*=a'*? >;
(b)if Gisnon-split, G = <a,b:a*"=1,b>" =a®"" |
ab:._ al+2r >,

Lemma 4.4. Let £ be a primitive 27-¢h root of unity, and
m>r20. Then

zg:gni Ef“ 2 .0
where £ is an integer, (k.2) = 1.

Proof. As E is also a primitive 2™-th root of unity, we

may assume that k=1, Since m>r, € is a primitive
27-th root of unity so that

148 + 8 4 BET I g,
Multiplying by &, we have

r 4 mrEIYF
€+ §1+2 + 514\2“‘ + .+ §l+(2 9. =0 (1)

We know from Lemma 4.1 that the order of 1+2
mod 2" is 2=, Thus, the residues mod 2" of the

-integers (1+27), 0<is2m-1, are distinct. It follows that,

for each i, 0<i<2™-1, there is a unique ;°, 0<i'<2™-1,
such that (1+27)'= 1+i"2" mod 2™, we can rewrite (1) as

P A e}

the required identity.

Corollary 4.5. Let k be an integer such that (k,2")= 2%,
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and let m-o>r20.
Then

Z?:{‘)"-l &k (e2ry 0.
Proof. If (k, 2")= 2% then E* is a primitive 2™ A root of
unity. So by Lemma 4.4 we have T2 g427Y -

By Lemma 4.1, (1+2')"" * " = 1 mod 2™, Thus, if 0 < |

<27, (1+2’)§ _r_:(l+2r)i mod 27 when i Ej mod 27T
It follows that £¥/*2Y = £K1427Y and <o
I A )

Lemma 4.6. Let  be a primitive 2"-¢h root of unity, and
let £be an integer such that (k, 2”)= 2* and let m-a>r20.

Let 1<j<2™-1, and let S= 32" 1 g*0+2) Thep
=)

(@) p/* = g2 = | = 42777 it and only if
2m-r~o: ‘ J;
(b) 2m‘raa éjk if zm-r<a ‘j«,
S=
0 otherwise,

Proof. (a). We know that jk(1+27)'= jk(1+2k ,) for some
k, Xfj=j2m= then jk2’=0mod 2™, Sojk(1+2’)' = jkmod

2™ Hence é’ik = &jk (+27) =, = gjk (“21’)2,”.’-“-1.

Now let £ = gh 0+ o o g7 o0
= jk(1+2') mod 27,

Hence jk =0 mod 2. So 2" j.

(b)If2>does not divide j, then (j, 2")<2™~*and (jk,
27)<2™". So by Corollary 4.5 we have S= 0. Hence (b)
follows.

Now we want to calculate the irreducible
representations and irreducible characters of metacyclic
2-groups. In [8], P.A. Tucker gives a method based on
the reduction of induced representatipns of finite groups.
Let G be a split extension of A by G/A and let L be an
irreducible representation of K/A], where K is a field.
Then by the method given in [8] we can calculate the
irreducible components of the representations of G
induced from L.

In [5], Y. lida and T. Yamada studied the faithful
irreducible characters of a metacyclic 2-group.

Let G = <ab:a?"=1,b""=a"", b =a"*?'> as
ecarlier. Let o be integer, 0 <a<m-r, and let &£ be a
positive integer such that (k, 2")= 2> and let £ be a
primitive 27-th root of unity, Let o= min {¢: tm-n-s>0,
teZ}. Note that 021. Let 6,= min {t: tm-n-r-oc>0, t€ Z}
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and n=¢>""""" (from the conditions (a) and (b) for
the uniquely reduced representation of G it follows that
n-m+rz1 so W is of order 2*m+®) Let 1<j<Qrm+rea,

Define y !,‘: : G — GL2™, C) by
r mo-r -
Y5 @=diag @, g0, L grarRn T,

IV ost e -
0. 0 pighrimmTee

106. 0
Ye®)=

0. 10

where m-r-o¢ >1 and

yt,(: (a) =diag (gk, 6& (l+2!))

0 nlékp_amm-sﬂ )
1 0

y!jf(b)":(

where m-r-o = 1.
We want to show that this is a representation of G. In
order to do this we need to prove that:
@y f,f @ =hn+a
Q2™ oy O (2,
(b) )’;,k (b )")’,,k (a )-»
8 (b ) O (1427
©y,@)=y @)

r ';r mer-%.y  am
Since (diag (£¢, g4 0?7, .., gF0¥2 ? W=

m-r-a, 50 (a) follows. Let U= diag (u,,u,,....u ) and V
be a dxd matrix as follows:

0.0v
10.0
V= ,
0.10

For 1sj<d, let C= vI. By induction we can prove that

s
Iy 0

for 1gj<d and V?= C =vI,.
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~ Ifris anon-negative integer, then r= kd+j for some
non-negative k and 0sj<d and V'=(C )}V’. Hence any
non-negative power of Vis eithera diagonal matrix orits

diagonal entries are zero. In particular, for r= kd, we -

have V"= (C )= VI, ,

We know that when G is non-split then s<min{m-
r,r+1)<r+1,sos<r. If G splits then s=0. Hence r-s20.
~ Therefore 27127+, So, for 20, k2™ (1+27Y = k2™ mod

2n. Hence y,;(@"") = £ mr=. Also letting E=

. zm-r-a . n o eg .
y e ) we see that E = nf £X2ODm TS0, 0

n 2n'm+r+(t
y”: (b?'n) = Egnumvm - 6

So (b)follows.
Now

Since has order SO

koom-s mes
12?1-'-0! = §k2 Iymr-a,

and V'UV= diag (u,4;.....u,u ). This shows that

~ .k (1427) gk (14270 ke2r 2T
y® (@) =ding(h 02,87, g T

and

k(427 P
aen

L

y& @) =diag €477 ¢
m-r-Ot

paaar RRTEL (127
g {1+27) ’é:k(** ).

But since (%, 2m)= 2% and since 2™ | (1+2' ¥ % by

Lemmad.1,s0 & 2 £*  Therefore (c) follows.
We know that, for j >0, either V7 is a diagonal matrix
or all of its diagonal entries are zero. Since Uis diagonal,
so, for i,j20, either UV is a' diagonal matrix or its
diagonal entries are zero. Itis adiagonal matrix whenever
d 1 j; otherwise its diagonal entries are zero.
‘We want to show that the tepresentations y*  are

_irreducible. By the above, for i, j20, y;”‘ B (a't)iseithera
- diagonal matrix or all its diagongl entries are zero, and it
is diagonal precisely when 2™%/j. Let S be the sum ofthe
diagonal in this case. Thus
S=1 il gj;kz(ml)m-n—r-s»a 2{2:5'-“ A éik g+2ry where j= J,
omra Fyurthermore, by Lemma 4.6, if 2™~* | i, then

. ; ; {g+lmn-rs-ox P . .
§ =it g2 ™% while, if 2> does not

Behravesh

F.Sci.l.R. Iran

divide i, then S = 0. »
Let xt"; denote the character of x;"; . Then, from the

above, for i, 20, we have:

o iyl g ik + 1k RO ..
mront i 27, 5,

2%k (@ b)) =\ andj=j;2"""

0 otherwise

So xf; has exactly (27+%) (2rm+r+9) = Qrmilrela NON-Zero

values, each with norm 2%,
To show that y ¥, is irreducible , it suffices to show

that [x%:, 7« 1= 1; but

e, x5l =L Teeo 22@25 @)

l6l

=~ 1 (22(m ~r‘a}2n-m +2r+2a + 0) =1.

—2:1 o

Letus consider x 5 for different values of ¢, land £.
Let 3% =%« where 0<q, a’<m-rand 1k, k', (k, 2")=
2%= (k’, 27). Since x% (1) = 27+~ (1) so & = . Now
consider % (@7%) = xT«(@ 7). Then

g*TTE o T Hence k2m = k2 mod 2.
Therefore k= k" mod 2*%,

Finally, as % @™ = 2% 677, then

& 2@ #Dmonor s @ k»z(o\»l)m-u-ras-an’.. As ko =

k2™ mod 2™ and om-n-s>0, so 1= 1"

As the order of 1 is equal to 2*™*"**and as 1</,
1<2mm+r+e we conclude that I= 17,

Thus, for each @, 0<a<m-r, the characters x7x,
1I<2mmere® k= k 2% 15k<2’, (K}, 2)= 1, are distinct; there
are 2r-m++22r1(2.1) such characters.

To show that these, together with the 2= 1G.G" | -
linear-characters; are the only irreducible characters of
G, it suffices to show that IGl=2""+2x % (1)?, where the
sum is over all o, 0<o<m-r, all 1, 15I<2™+= and all £,

[

C1SkS2e (K, 27y = 2%

262

We know that
2mr 1= (2-1) @ 427 4 L4
Therefore
2minQren 2’*"(29‘4'~1) = 27+(2-1) (21427 2, +1)

= 2»-m+2r»l (2_ 1 )22{»}«) +2rwn#2r(2._ 1 )22(m-r-l J. .., +2n+r-‘2(2_
122,
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It follows that

2r+n +2n—m+2r+1 (2_ 1 )22(m-r) +2n—m+2r(2_ 1 )22(m-1 ) +... +2n+ r-2(2_
1)22 = 2r+n+2m+n_2n+r= 2n+m___ |G|’

as required.
From the above discussions we have the following
theorem.

Theoremd.7.LetG=<a,b:@” =1,b% =™, & =d"">
as above. Let 0<o<m-r. Letkbe a positive integer such
that (k,2™) = 2#and let € be a primitive 2"-th root of unity.
Let o= min {¢: tm-n-s>0,t € Z}.Let 1<I<2+m+= and

" where 6= min{: tm-n-r-&>0,t€ Z}.
Define yl"‘ e G — GL(2™=, C) by

1etn=5261m n -r

YIi‘k (a) =dlag (gk’ 5““’2'), s ék(l+2")2m-r-a_l)

k 2(0+1 Yy -n -r -5-Q

0. 0nté¢

10 0
y,":(b)=

0. 10

where m-r-a>1 and

Y& @ =diag ", &)

£ 20m-n-s+l )
0

where m-r-o¢ = 1. Then each non-linear irreducible
representation of G is equivalent to one of the form y 7,
for some [, kand o. Let %, denote the character of this
representation. Then

1}
yll:(b)=(0 n 6
' 1

. ik +j Ho+lmner-sa
’2m-r-an)11 6 K+ jik if 2mra) iyjy
x5k (@ b)) = andj =j;2""*
\0 otherwise

Now we want to calculate ¢(G)= g(G) of ametacyclic 2-
group whenZ(G) is a cyclic subgroup. In order to do this
we will consider two different cases.

Lemma 4.8. Let y be a faithful irreducible character of

Behravesh

263

Vol.9 No.3
Summer 1998

a faithful metacyclic 2-group G. Then my(¥)= 1 except
when G is a generalized quaternion group of order 2" for
some m.

Proof. See [{5], Corollary 4.7]

Corollary 4.9. Let G be anon-exceptional metacyclic 2-
group. Then c(G)= q(G).

Proof. This follows from Lemma 2.6 and Lemma 4.8.

Theorem 4.10. Let G be a non-cyclic metacyclic 2-
group with cyclic centre. Let G be split so that G = <a,b:
2 =b? " =1, & =a" > as earlier. Then ¢(G)= q(G)=
p(G)= 2"

Proof. Suppose that (k, 2") = 1, that is, ot = 0; we then
have 7 = 1 and [ = 1 since n= m-r by Lemma 4.2(d).
Hence

omer g qf 2"l

2, @ b') = .
’ 0  otherwise.

Since ¥ # 1 for 1 < i <2m and since p" =1, 21k is

faithful and y ¥ (g)#Oforallge Z(G) and equal to zero
otherwise. In the other hand, when o # 0, the kernel has

more than one element as @™ is in the kernel, that is,
2%, is not faithful. So G satisfies the conditions of
Theorem 3.4. Since IZ(G) = 2" by Lemma 4.3, so
c(Z(G)) = 2" and we have c(G) = 2" c¢(Z (G)) = 2mrr =
2™,

Since Z(G) "B=1,50B;=1 and p(G) < 1G: Bl=2".
But ¢(G) < p(G). This implies that ¢(G) = q(G) = p(G)=
2m,

Now let G be a metacyclic 2-group and let G be non-
split with cyclic centre. By Corollary 4.3 we have G =

{ab: a®" =1, p =a?™", a?=a'*?"} in the earlier
notation. Let o> 0 and & be such that (k, 2m) = 2% Then
42" is in the kernel of x%: for all /, so when &> 0, the
characters y % are not faithful. Since the centre is cyclic
so there exists a faithful character. Moreover, any faithful
character must have degree 2" and in this case o= 0.
Since the degree of each faithful irreducible character of
G is 2™ and (x % (1))*= 1G: Z(G)! and the value of this
character is zero in G\Z(G), so G satisfies the conditions
of Theorem 3.4 and ¢(G) = q(G) = QmrQamedn = QAT
Therefore we have the following lemma.

Lemma 4.11. Let G be a metacyclic 2-group with cyclic
centre and let G be non-split. Suppose that G=<ab:
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2 1’ b2"
q(G)= Zs*r.

=g* ", ab = a'*?" > as earlier. Then ¢(Gj=

Lemma 4.12. Let G be a metacyclic 2-group. Then, in
the standard notation, there exists an { such that H=

<6 ™ g >has order 2=*and H "B = 1.
Proof. By induction on d it is possible to prove that

Lo aeard 20 -t
(b= pPa @Y 4 4 (1427Y41) = =bg a2va,

ryd
Let d = 2. Then 32" -1 o where (k. 2) = 1, by

, a+2'y -1
Lemma 4.1.

Let 1<i<2™ be an integer such that ik=-1 mod 2w,
since (k,2)= 1, suchanexists. Now let H =< ¥ " di >,
Then (2" ") =1 and, for 0Sj<m-s,

20 -m a0t

G Y =b a1 # 1 forsome k, suchthat(k,,
2)= 1. This shows that the order of H is 2"’*’

Theorem 4.13. Let G be a non-cyclic metacyclic 2-
group with cyclic centre Let G be non-split. Suppose

thatG=<a,b:a?" =1, b= a®"", a* = a**?" > asearlier.
Then ¢(G)= q(G)= p(G)- 2""

Proof. Since Z(G ) is cyciic, sos=r.ThenbyLemma4.12
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there exists i such that H = <b**™*'a"> has order 2™". But
HNZ(G)=1,sobyLemma3.1, H = 1.Therefore p(G) =
2 Hence by using Lemma 4.11 and the fact that ¢(G)
< p(G), the result follows.
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