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Abstract

The effects of chronic metabolic acidosis, alkalosis and alloxan-induced
ketoacidosis on G6PD activity of rat kidney, liver and erythrocytes were
studied. Metabolic acidosis significantly increased the activity of kidney
enzyme (55%) but decreased the liver (43%) and erythrocyte (38%) enzyme
activities. Alkalosis did not make a significant change in the kidney or liver
enzyme activity but slightly decreased that of the erythrocyte enzyme. In
alloxan-induced diabetic rats, the rise in G6PD activity of kidney (69%) was
associated with a decline in the enzyme activities of liver (50%) and.
erythrocytes (51%). It is suggested that in alloxan-induced diabetes,
ketoacidosis is mainly responsible for the change in G6PD activity of various
tissues and different organs do not respond similarly toward metabolic acidosis

or alkalosis.

Introduction

Glucose 6-phosphate dehydrogenase (G6PD), the
first enzyme of hexose monophosphate shunt,
generates reducing equivalent in the form of NADPH
necessary for biosynthetic reactions and for
maintenance of cellular integrity (for review see Ref.
1). The activity of G6PD is regulated under different
metabolic and hormonal conditions in several organs
[2-5]. In rat kidney, the rate of hexose monophosphate
shunt has been affected by chronic metabolic acidosis
[6] and other physiological and pathological situations
such as growth and diabetes [7-8]. Several other
reports on diabetic animals have shown that insulin
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affects G6PD activity in liver [9], adipose tissue [10]
and mammary gland [11]. The possible roles of
chronic metabolic acidosis and alkalosis, however, are
still uncertain.

The present work was undertaken to investigate the
relationship between chronic metabolic acidosis,
alkalosis, alloxan-induced keto-acidosis and G6PD
activities of several tissues.

Materials and Methods
Chemicals
Glucose 6-phosphate, nicotinamide adenine
dinucleotide  phosphate, alloxan and  f-

mercaptoethanol were obtained from Sigma Chemical
Co. (U.S.A). All other chemicals were reagent grade.
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Animals

Male Wistar rats (200-250 g) were purchased from
the Pasteur Institute (Tehran). The animals were fed
with standard diet (50% carbohydrates, 20% protein,
5% olive oil, 10% cellulose) and maintained as
described previously [12].

Acidosis and Alkalosis

To generate metabolic acidosis, five rats received
0.28 M NH,CI solution instead of water for 10 days
and five rats were given water as controls [6, 13].
Similarly, a 0.8 M sodium bicarbonate solution was
given to a group of animals for six days to produce
metabolic alkalosis.

Alloxan-Induced Diabetes

The rats were fasted for 24 h and alloxan solution
in saline was injected intraperitonally (200 mg/kg)
into a group of five animals to induce diabetes, and
saline was injected into the control group [14].

Tissue Preparation

The liver was perfused in situ using 0.15 M NaCl
to remove erythrocytes. The liver and kidney were
removed and separately homogenized in 10 mM Tris-
HCI buffer pH 7.6 containing 1 mM EDTA. Each
homogenate was then centrifuged at 30,000 g for 30
minutes and the supernatant kept for the enzyme
assay. For the erythrocyte enzyme, the blood was
collected from the decapitated rats, the erythrocytes
separated and washed with 0.15 M NaCl and
hemolyzed in a solution containing 10 uM NADP+, 7
mM f- mercaptoethanol and 2.7 mM EDTA pH 7.0 as
described before [15]. The hemolyzate was
centrifuged at 15000 g for 20 minutes and the
supernatant kept for G6PD assay.

Measurement of the Enzyme Activity

The enzyme activity was measured in 50 mM Tris-
HCI buffer pH 7.4 containing 0.6 mM NADP+, 2 mM
glucose 6-phosphate, 5 mM EDTA and the appropriate
amount of the supernatant at 25°C using a Perkin-
Elmer spectrophotometer model 551 S. The reaction
was monitored by measuring the change in absorbance
at 340 nm. Each enzyme unit was taken as the enzyme
activity producing 1 pmole NADPH/minute.

Protein Determination
Protein was measured by the method of Lowry et
al. [16].

Determination of Blood pH and Bicarbonate
Blood pH and bicarbonate were measured using an
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Az4 blood gas analyzer model 985.

Glucose Measurement
Blood glucose was determined by the standard

method [17].

Results

Metabolic acidosis and alkalosis induced by NH,ClI
and NaHCO, are shown in Table 1. The decline in
blood pH of NH,CI receiving rats was accompanied
by a decrease of about 37% in the concentration of
blood HCO;-. Conversely, in rats given NaHCO; both
blood pH and HCO;- significantly increased. Table 1
also shows that alloxan-induced diabetes, indicated by
high plasma glucose concentration (1154 g mg/dl),
was associated with a chronic acidosis.

The effects of chronic acidosis, alkalosis and
alloxan-induced ketoacidosis on G6PD activities of
kidney, liver and erythrocytes are presented in Table
2. Chronic acidosis increased the activity of kidney
enzyme (55%) but decreased that of the liver (43%)
and erythrocyte (38%) enzymes. Alkalosis, however,
did not significantly alter G6PD activity of kidney or
liver but slightly decreased the erythrocyte enzyme
activity. In alloxan-induced diabetes the data are
closely similar to those obtained in metabolic acidotic
rats. The rise in G6PD activity of kidney was
accompanied by a decline in the enzyme activities of
liver (50%) and erythrocyte (51%).

Discussion

The data presented in this article demonstrate the
association between chronic metabolic acidosis and
diabetic acidosis and the activity of hexose
monophosphate pathway in various tissues. The rise
observed in kidney G6PD activity of rats with both
metabolic and diabetic acidosis might be explained in
several ways. The acidosis itself may affect the kinetic
behavior of G6PD resulting in the change of the
enzyme activity. This was, however, ruled out by
Peragon et al. [6] who have found no change in the
kinetic parameters of kidney G6PD activity in acidotic
rats. Schoolwerth es al. [18] have reported that in rats
with chronic acidosis the increased activity of
glutamate dehydrogenase was primarily due to an
alteration in the enzyme kinetics. Other workers,
however, have suggested that an increase in protein
synthesis is mainly responsible for the elevation of
kidney glutamate dehydrogenase in the acidotic rats
[19, 20]. The concentration of total glutamine in renal
cells was also elevated during chronic acidosis where
ammonia production is increased [21-22].

In - alloxan-injected rats, in which ketoacidosis is
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Table 1. Induction of chronic acidosis and alkalosis in rats

Animal Blood pH Blood HCO,- | Plasma glucose
Conditions mM mg/d]
Chronic acidosis:
Control 7.012+001 | 21.92+0.89 -
NH,Cl receiving 6.86£0.05% | 13.7+14* -
Chronic alkalosis:
Control 7.032+0.03 | 20.57+0.7 -
NaHCO, receiving | 7.29£0.02* | 41.65+5.9* -
Ketoacidosis
Control 7.21+£0.02 23.3+0.51 104+£29
Alloxan-injected 7.02+£0.05%| 108+1.75 1154 £ 168

Rats were given or injected the indicated solutions and the pH, blood
bicarbonate and plasma glucose measured as described in Methods. Each point

represents mean £ S. E. of five rats.

*_ significantly different from control (P < 0.001 to 0.05).

Table 2. The effects of metabolic acidosis, alkalosis and alloxan-induced

ketoacidosis on G6PD activity

Enzyme activity,
miu/mg protein
Conditions Control Experimental ~ Change
%
Metabolic acidosis:
Kidney 3448+5.4 53.54 £ 3.5* 55
Liver 515+9.6 29.2+0.8* 43
Erythrocytes 23+1.04 142+ 1.9 38
Metabolic Alkalosis:
Kidney 14.05+£29 13.8+1.5 1.8
Liver 1045+£205 123%13 17.7
Erythrocytes 233+1.6 17.3 £ 2.5* 25.8
Alloxan-induced ketoacidosis:
Kidney 20.5+2.05 34.7 £ 5.95* 69
Liver 145+3.1 73+£0.8* 50
Erythrocytes 265119 13+ 1.6 51

Metabolic acidosis, alkalosis and alloxan-induced ketoacidosis were generated
as described in Methods. Each point represents mean +S. E. of five rats
*_significantly different from control (P < 0.01 to 0.05).

developed [23], the role of insulin may also attribute
to the change in G6PD activity. Geisler and Hansen
[10] have shown that insulin stimulates G6PD activity
in adipose tissue through an increase in protein
synthesis. This finding may account for the decrease
in liver G6PD in diabetic rats, but such an effect on
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renal enzyme is unlikely since even at low levels of
insulin G6PD activity is elevated. Seyer-Hansen [24]
has reported that in diabetic rats renal hypertrophy
develops and the rate of protein and nucleic acid
synthesis in liver and muscles decreases while in the
kidney it is increased [25-26]. Acidosis-induced renal
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hypertrophy was also associated with a change in
pentose phosphate pathway activity [27]. It is,
therefore, suggested that in diabetic rats the
ketoacidosis is responsible for the observed renal
response.

The decreased activity of liver G6PD in metabolic
acidosis might be the result of the change in food
intake pattern occurring in NH,ClI receiving rats which
in turn alters hepatic dehydrogenases activities [28].

Studies performed on the effects of pH and anions
such as bicarbonate, phosphate and sulfate on G6PD
activity have shown that these anions stimulate
glucose dehydrogenase but inhibit glucose 6-
phosphate oxidation activities of the enzyme [29].
These studies have also shown that the above anions
and nucleoside triphosphate occupy the same binding
site on G6PD. Unemoto et al. [30] have found that a
low concentration of chloride ion stimulates the
enzyme activity but has inhibitory effects at high
concentrations. Therefore, in metabolic acidosis and
alkalosis, where the concentrations of chloride and
bicarbonate, respectively, are increased, erythrocyte
G6PD activity is inhibited probably via changes in the
enzyme kinetics. More investigation, however, is
needed to prove this.
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