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Abstract

We believe that the study of the notions of universal algebra modelled in an
arbitarry topos rather than in the category of sets provides a deeper
understanding of the real features of the algebraic notions. [2], [3], [4], [S], [el,
[7], [13], [14] are some examples of this approach. The lattice Id(L) of ideals of
a lattice L (in the category of sets) is an important ingredient of the category of
lattices. In this paper, we construct the (internal) ideal lattice F(A) of a lattice
A in the topos of M-sets for a monoid M. The process of the construction of
9 (A) is so that it can also be done in any arbitrary topos whose ingredients are
known. Finally, we consider the lattice structure of F(A) for some special kind
of lattices A in the topos of M-sets and show, among other things, that if A is
an internally complete M-Boolean algebra then F(A) is an M-Stone lattice.

1. The Topos of M-Sets

1.1. Recall that for a monoid M with identity e, a
(left) M-set is a set X together with a function
A:MxX—X, called the action of M on X, such that for
xe X and m, ne M (denoting A(m, x) by mx)

i) ex=x

ii) (mn) x=m (nx)

A map £:X—Y between M-sets X,Y, such that for
xe X, meM, f(mx) = mf(x) is called an equivariant
map. For any monoid M, the class of all M-sets and
equivariant maps between them form a category
denoted by MSet.

It is proved that the category MSet is isomorphic to
the topos (see [9]) SetM, where M is considered as a
category with one object. So, MSet is a topos whose
ingredients (limits, subobject classifier, exponentia-
tion) are followed from the general topos SetC, where
C is a small category (see [8]).
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1.2. Limits and colimits in MSet are calculated in
the same way as in the category Set, by defining the
action of M on them in a natural way. In particular, the
singleton {0} with the obvious M-action is the
terminal object 1 of MSet. Monomorphisms
(epimorphisms) in MSet are exactly one-one (onto)
equivariant maps.

1.3. The subobject classifier 2 in MSet is the set
L,, of all the left ideals of M (i.e. subsets S of M
satisfying mxe S, for meM, xe ) with the action of
Mon Q=L,, defined by mS={xe M:xme S}. Also, the
truth arrow t:15€ is given by t(0)=M.

Note that, M is a group if and only if Q = {0, M}.

1.4. The exponentiation BA, for A, Be MSet, is the
set Hom,, (MxA, B) with the action of M on it
given by

(mf) (s, a) = f(sm, a)

for me M, fe BA,
The evaluation arrow ev:BAxA—B is defined by
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ev(f, a) = f(e, a), for fe BA, ac A. In particular, for any
M-set B, Hom,,q, (M, B) = B, since B'=B.

Note that, if M is a group then the exponentiation
BA is isomorphic to the M-set HomSlet (A, B) with the
action given by (mg) (a)=mg(ma), for g:A—B,
‘mem, ac A.

1.5. The power object PA of A in the topos MSet is

QA = Hom,,q,, (MxA, Q) = Sub (MxA)

where Sub (MxA) is the set of all subobjects (in MSet)
of MxA with the action of M defined by

sX = {(m, a) : (ms, a) eX}

for Xe Sub (MxA), se M.
Note that, any subset X of MxA can be written as

x= U {m}xX,
meM

where X ={a €eA: (m, a) €X}, so we identify X by a
family (X_)_ .y Now, since any XeSub (MxA) is a
subset of MxA which is closed under the action of M,
(i.e. (sm, sa) = s(m, a) €X, for s €M, (m, a) eMxA),
we have that the family X=(X_)__, is in Sub (MxA)
if and only if X, cX,,, for every s, meM, where
sX = {sa:a€X_ }. Also, the action of M on Q* = Sub
(MxA) then translates to sX= (X ), - for seM, X=
(X ) e ME Sub (MxA).

It is easy to see that when M is a group, Q* = p(A)
the power set of A with the action of M given by
mY={ma:acY}, formeM, YCA.

1.6. The membership relation € ,, for A eMSet;
that is the pullback of t:15€ and ev: QAxA—L; is

ea={Xa): X=Kpn) me me L 2€X,}
with the same action of M on QAxA. In fact, € ;=
ev{M}.

2. Lattices in MSet

2.1. An (internal) lattice in the topos MSet is an M-
set A which is also a lattice whose lattice maps, v, A:
AxA—A are equivariant. We call such a lattice an M-
lattice. (For convenience we take M-lattices with 0,
and m0=0, for all m in M)

The class of all M-lattices and equivariant lattice
homomorphisms between them form a category
denoted by MLatt.

2.2. An (internal) bounded lattice in MSet or an M-
bounded lattice is an M-lattice which has a greatest
element 1 and a least element O (as a lattice) such that
m0=0, ml=1, for every meM.

Example. For any monoid M and AeMSet, the
power object QA is an M-bounded lattice with
componentwise lattice operations. That is, for
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X=(X_)pemr Y=Y 0)me ME QA we have

XvY = Xn VU YodmeMs XAY =X N Y dnem
0=0p)mem:0n=0,Vme M
1=(A)meM>An=A,VYme M

2.3. An M-bounded lattice A which is pseudo-
complemented as a lattice (i.e. for every ac A there is
an element a*eA which is the largest element
satisfying aaa* = 0) and whose unary operation ( )* :
A-—A is equivariant, is called an M-pseudo
complemented lattice.

Example.  is an M-pseudo complemented lattice
in MSet, which union (as join), intersection (as meet),
¢=0, M = 1 and the pseudo-complementation given
by $* = {meM:mS=¢} , for SeQ.

2.4. An M-pseudo complemented lattice A which
is a distributive lattice satisfying a*va** = 1, for every

a €A, is called an M-Stone Lattice.

Note that € is not generally an M-Stone lattice. It
is proved that Q is an M-Stone lattice if and only if M
satisfies the Ore Condition (i.e. for every a, b eM
there exist s, t €M such that sa=tb).

2.5. An M-bounded lattice A which is a Boolean
lattice whose unary operation ( ) : A—>A is
equivariant, is called an M-Boolean lattice.

The class of all M-Boolean lattices and equivariant
Boolean homomorphisms between them is a category
denoted by MBoo.

2.6. Definition.
X=(X_ ) e ME 2.

A supremum of X is an element a of A such that

i) ma is an upper bound of X , VmeM. That is
x<ma, VxeX .

ii) for every seM, if mb is an upper bound of X__
for all meM, then sa<b. That is x<mb, VxeX__,
implies sa<b.

If a supremum of Xe QA exists it is clearly unique,
and we denote it by vX. In particular, for a, be A, avb
is the supremum of the family ({ma, mb}). -

Notice that, if M is a group then aeA is a
supremum of X=(X ) _\ if and only if ma is the
supremum of X, VmeM.

2.7. An M-lattice A is said to be internally
complete or M-complete if vX exists, for every
XeQA,

It can be shown that A is internally complete if and
only if there exists an order-preserving equivariant
map v:QA— A such that, for X= X me vE QA beA

Let A € MLatt  and

vX<be X,cdmb,VmeM.
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It is proved that an internally complete lattice in
MSet is a complete lattice (in Set). But, the converse
is not necessarily true. For example, 2={0, 1} is a
complete lattice but 2 is an internally complete lattice
in MSet if and only if M satisfies the left Ore
condition.

Example. The M-lattices €2 and QA are internally
complete. In fact, the supremum of X = (X_)_ € Q%
is given by vX = {m ei\/I:Xm=Q}; and the supremum

of X = (X)), .y €92, usually denoted by UX, has
{aeA: BYEXm, aeY,}as its mth component.

2.8. An internally complete M-lattice A is called an
internal locale or an M-locale if, for every a€A,
X=(X_), M€ Q2*

arvX =v ({marxxeX } . u-
3. Construction of I (A)

We want to get the internal version of the notion
"ideal” for lattices in the topos MSet. That is, for an
(internal) lattice A in MSet, we construct an M-set,
F(A) which has properties similar to Id(A) and such
that whenever m={e} and hence MSet =Set it is equal

to Id(A). To do this, first we translate the definition of
an ideal of a lattice into categorical terms and using
the ingredients of the topos MSet we get the definition
of I (A), for a lattice A in MSet.

The importance of this construction is that this
work can be done in an arbitrary topos %6 (instead of
MSet) in a similar way.

3.1. Remark. Let A be a lattice. Recall that an
ideal I of A is a non-empty subset of A such that

i) ael, bel=avbel
ii)aeA,bel=anbel.

We denote the lattice of all ideals of a lattice A by
Id(A). It is clear that Id(A) is characterized by the
following conditions: ‘

@' {(X, a, b) : Xeld (A), a, beX} c {(X, a, b) :
Xeld (A), a, beX, avbeX]}

(i)' {(X, a, b) : Xeld (A), ac A, beX} c {(X,a,b) :
Xeld (A), acA,beX, anbeX}

Now, recall that the membership relation € ,, in
the topos Set (of sets) is the set

e, ={(X,a): X cA,aeX}
Also, consider the projection arrows
P, q: P(A)xAxA—P (A) xA given by p(X, a, b) = (X,
a),

q = (X, a, b) = (X, b). Then it easily follows that (i)',
(ii)' are respectively equivalent to
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()" p! (e,n(d(A) xA)) Nq! (e ,n(1d(A) xA)) ¢
(idxv)! (€ ,n (Id(A)xA))

()" q! (e,n (Id(A) xA)) ¢ (idxA)! (e,n
(Id(A)xA))

where idxA, idxv: P(A) xAxA - P(A)xA are given
by

(idxA) (X, a, b) = (X, anb) , (idxv) (X, a, b) = (X,
avb). So, categorically, Id(A) is the subset (subobject
in Set) of P (A) which satisfies (i)", (ii)" , and
1d(A)x{0} c € ,n(Id(A)xA (i. e. 0eX, for all X in
1d(A).)

3.2. Construction. Let A be an M-lattice and F(A)
be the internal version of Id(A) in MSet. We
internalize the conditions (i)", (ii)" of the above
remark, in MSet, to get the conditions which
characterize T(A).

Recall that the internal version of P(A) and € AN
MSet are Q* and €, = {(X, a) : XeQ* , aeX ),
respectively (see 1.5, 1.6). So, F(A) is a subobject (a
subset which is closed under the action of M) of QA
which satisfies

i) ple,n (F(A) x4)) ng! (e,n T(A) xA)) ¢
(idxv)! (e ,n(T(A) xA));

ii) 0! (¢ ,n (T (A) xA)) < (idxA)! (€ ,n (T (A) xA));
iii) T (A) x {0} c SNg J(A) xA).

where p, q, idxv, idxA : QAXAXASQAXA are
defined as in Set (see 1.2), and hence we have
P! (€0 (F(A) xA)) = {(X, a,b) : XeT(A), aeX,
beA}
q! (e,n T(A) xA)) = {(X, a, b) : XeT(A), aeA,
beX. }
(idxv)! (e AN JF(A) xA)) = {(X, a, b) : XeT(A), a,
beA,avbeX }
(idxA)! (e AN F(A) xA)) = {(X, a, b) : XeT(A), a,
beA,anbeX }.

Thus, F(A) is a subobject of Q* which satisfies

) X=X)nem€T(A)and a, be X, = arbeX,
i) X=X )pm€T(A)andaeX ,be A = anbeX,
if) X = (X_). . e T(A) = 0eX,.

But, the above conditions yield that for X =

X mem €T(A), X €1d (A). On the other hand, the
fact tha?%' (A) is a subobject of Q* guarantees that, for
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every X:(Xs)se ME JA)and meM, mX = (xsm)se M is
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in F(A). Therefore, for every XeJ(A) and meM, we -

have X = (mX).€ld(A) (note that 0e (mX), = X ).
So, we have the following definition.

3.3. Definition. Let Ac MLatt. The set

TJA) = {X=(X)pcmE QA : X _eld(A), Vme M}
is an M-lattice with the same action of M as on QA
and the componentwise lattice operations, and is
called the internal ideal lattice of A. Each member of
F(A) is called an internal ideal of A.

Notice that if M is a group then the restriction of
the isomorphism QA =p(A) (given by X—X,) on
J (A) gives the isomorphism I (A) = 1d(A).

Example. consider the monoid M, = {e, a, b} with
the binary operation given by xy=y, for x, yeM';,
with y # e. Then the lattice 2 = {0, 1} with the identity
action of M’; on it is an M';-lattice.

The action of M'; on M';x2 is then given by

€0 1) @0 @l ©®0 O
ele0 1 @0 @l 00 @1
a|@0 @l @0 @1 ©®0 O
b| ®,00 b,1) @0 @l ®0 ®1)

It can be seen that

X, = ({0}, {0}, {O}) , X, = ({0}, {0}, 2) , X; =
({0},2, {0h '

X4=({0}9 27 2) ¢X5=(2, 2, 2)

are all the elements of F(2). So, J(2) is the M';-
lattice

with the action of M'; given by

X, X, X, X, X
elX, X, X, X, X
alX, X, Xy X5 X
blX, X5 X, X X,

5 1

N

4. Some Properties of ¥ (A)

4.1. Definition. Let A eMLatt. An ideal I of A is
called an M-ideal of A if I is closed under the action
of M, that is mIcI, for every m e M, where ml = {ma:
ael}.

4.2, Remark. For any M-lattice A, the global
elements of I (A) (i. e. the equivariant maps from 1 to
9 (A)) are in one-one correspondence with the M-
ideals of A. In this correspondence, a global element
£:15F (A) corresponds to the M-ideal X, where f (0)
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= X meM: Conversely, an M-ideal I corresponds to
the global element g:1-J(A) given by g(0) =
X me M where X_=I, for every meM.

4.3. Recall that, for any lattice A, there is an

; embedding (in the category of lattices)

L:A-1d(A) given by a— la= {X eA: X<a}.

Notice that defining the action of M on Id(A) by
m.I=<mI>, the ideal generated by ml={ma:ael}, we

- can make Id(A) into an M-lattice in such a way that l
_is an embedding in the category MLatt.

The internalization of the above embedding for the
lattices in the topos MSet is as follows.

4.4. Lemma. Every A eMLatt can be embedded
into F (A) by the map [.1:A—>J (A) given by a—[a] =
(J'ma)m eM

Proof. Using the facts that 4 is a one-one
morphism in MLatt and the operations of F(A) are
defined componentwise we easily get that [.] is a one-
one morphism in MLatt.

4.5. Remark. For every A eMLatt, the embedding
[.] factors through Id(A); that is there is a morphism g:
1d(A) - J (A) in MLatt such that g*d = [.]. In fact, the
assignment I-»I¥ = (m.I)__y, where m.I=<ml>,
defines a (one-one) morphism g:1d(A) -9 (A) in
MLatt. And for a €A, we have

(a)# = (mda), .y
= (J' ma)me M
= [a]
that is, the triangle

A [—]) T (A)

Id(A)
is commutative.

4.6. Recall that a lattice A is complete if and only
if, for every I eId(A), the supremum of I exists. Now,
an M-lattice A is internally complete if and only if the
supremum of J=(J ) exists for every JeJ(A).
This follows from the fact that for every X=(X_ ), .m
€ QA, the supremum of x exists if the supremum of the
internal ideal generated by x exists (and they are
equal).

At the end, we consider the lattice structure of
F (A), for some special kind of M-lattices A.

4.7. Theorem. Let A be an M-bounded lattice (in
fact 0 is what we need). Then

a) J(A) is an internally complete M-bounded
lattice.

b) If A is distributive then F (A) is an M-locale.

¢) If A is distributive then J(A) is a distributive
M-pseudo complemented lattice.
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d) If A is an internally complete M-Boolean lattice
then 9(A) is an M-Stone lattice.

Proof. a) If 0 is the least element of A then
0=0,_) e p» Where 0,={0}, is the least element of
F(A). Moreover, 1=(A_)_. .\ Where A =A, is the
greatest element of J'(A). Hence, I(A) is an M-
bounded lattice. Further, F (A) is internally complete
since, for every X=(X_)_ .u€ QI yx=<Ux>, the
internal ideal generated by Ux.

In fact, the mth component of vx is

(beA:3Y,.. Y eX_, bISY,v..vY,}.
b) By (a), F(A) is internally complete. Let

1=0,), m€ T (A) and X=(X)p. €27 @), we have
to show that

me M

Javx=v({mJal: 1eX D, m
Let m €M and b be in the mth component of JAvx,
that is beJ N(vx),. Then b €] and there are I,,...,
[ .ex,, such that [bI<I,v...vI . So, since A and hence
1d(A) is distributive,

[bl=[bIAll,Vv...vL ) = ([b]AL ) v..v([b]AL).

But b €J_ implies sb €J_ and hence lsbol . Vs
eM, that is [b]<m]. Thus

[bJ<(mJAL) v...v/(mJAL)

where the right-hand side parentheses are members of
{mJvI: 1 eXm), and ‘so b is in the mth component of
v({mJaLlex Dpome Therefore, Javx<v({mJAal:
lex_ D ye M- The converse is trivially true because, for
every m eM, xmr_:iva and hence mJAl<mJAamvX
=m(JavX), for every lex , that is {mJalile X }
gim(JAvX).

Consequently, J (A) is an M-locale.

m’

c) This follows from part (b) using the fact that any
M-locale is M-pseudo-complemented. In fact, for
1=(J_) e m€ T (A), we have

F=v({1 €T (A) : IanmJ=0}) _
and so the mth component of J* is

{beAisbe(J )*,Vs eM}
where (J_)* = {a €A ! anj=0, Viel,} is the

pseudo-complement of J_ in Id(A). Note that
distributivity of I(A) follows from the fact that Id(A)
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is distributive and the operations of Y (A) are defined
componentwise.

d) By (c), J(A) is distributive and M-pseudo-
complemented. Now using the fact that A is an
internally complete M-Boolean lattice, it can easily be
seen that the definition of J* (in part (c)), for
1= ) e M€ T (A), will be reduced to

I*=[(VI)1]

and hence J**=[(v])"*=[((V]))']=[V]]. Therefore, for
everyJe T (A),

PRI (VI IVIVIT=(L \J=1g

That is F (A) is an M-Stone lattice.

4.8. Corollary. Each M-lattice A (with 0) can be
embedded into an internally complete M-lattice.

4.9. Remark. By the above corollary, every M-

bounded lattice A is embedded in the internally
complete M-lattice J (A).
We have shown that, for any A eMBoo, the subset
N(A)={Je T (A):J=]**} of F(A) is an M-Boolean
algebra which is the minimal (normal) completion of
A.

Now, recall that completeness and injectivity are
equivalent notions for ordinary Boolean algebras (in
Set), and injective hulls are exactly minimal
completions. However, it is proved that there are
internally complete M-Boolean algebras which are not
injective in MBoo (see [7]). So, one can ask the
following questions:

1) For which monoid M, N(A) is injective, and hence
the injective hull of A?

2) Characterize the monoids M for which injectivity in
MBoo is the same as internal completeness.
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