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Abstract
A pseudo-complement of a quadrilateral D of order n, n, > 3, is a non-trivial (n+1)-

regular linear space with n2 - 3n + 3 points and n2 + n - 3 lines. We prove that if n > 18
and D has at least one line of size n - 1, or if n > 25, then the set of lines of D consists of

three lines of size n -1, 6(n - 2) lines of size n - 2, and n2 - 5n + 6 lines of size n - 3.

Furthermore, if n > 21 and D has at least one line of size n - 1, then D is embeddable in a
unique projective plane of order n. These results improve the results of the author.

Introduction

A simple graph G consists of a non-empty finite set
V (G), called the set of vertices, and a function m from
the set of unordered pairs of elements of V (G) into the
set {0,1} such that for every vertex P, m (P,P) = 0.
Two vertices P and Q are joined if m(P,Q ) = 1. Then
PQ is called an edge of G. Given a vertex P of G, the
number of edges through P is called the degree of P and
is denoted by d(P ). Also, for two vertices P and Q of
G, the total number of vertices joined to both P and Q@
is denoted by [ (P,Q ).

A claw at a vertex P of G is an ordered pair (P, S )
such that S is a subset of V (G ), P is joined to all
vertices in S, and no two vertices in § are joined. A
claw (P.,S) is extendable if there is a vertex Q not in S,
which is joined to P and not joined to any vertex in S.
Otherwise, (P,S) is a maximal claw.

A set of pairwise joined vertices of G is called a
clique. A clique X is a maximal clique if no vertex
outside K is joined to all vertices in K.

A structure D is an ordered triplet (P, B, I ) in which
P and B are non-empty disjoint finite sets, called the
sets of points and lines, respectively, and I is a subset
of P x B. We say a point X is contained in a line y if
(X, y) belongs to 1. The number of points common to
two lines y and z is denoted by /y,z/. Two distinct lines
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y and z are disjoint if [y, z] = 0, otherwise they
intersect.

Given a structure D = (P, B, I ), the structure D! =
(B, P, 1) is called the dual of D.

A structure D is called a non-trivial (n+1)-regular
linear space, n>1, if in D:

(i) a point is contained in exactly n+1 lines;

(ii) two distinct points are contained in a unique
common line;

(iii) no line contains all points of D.
Then r is called the order of D.

A projective plane of order n, n >1, is a non-trival
(n +1) - regular linear space in which all lines have the
same size n +1. A set of four lines of a projective plane
of order r is called a quadrilateral if no three of them
contain a common point. A pseudo-complement of a
quadrilateral of order n,n>3, is a non-trivial (n+1) -
regular linear space with n2 - 3n + 3 points and n2 + n -
3 lines. Examples of pseudo-complements of
quadrilaterals of order n are obtained by removing
quadrilaterals from projective planes of order n. A
structure D is said to be embeddable into a larger
structure D’ if D can be extended into D’ by addition of
new points and new lines.

In this paper, we show that if n >18 and there exists
at least one line of size n -1, or, if n >25, then the set
of lines of a pseudo - complement of a quadrilateral of
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order n consists of 3 lines of size n -1, 6(n -2) lines of
size n -2 and n? - 5n + 6 lines of size n -3. Also, if n
>21 and it has at least one line of size n -1, then it is
embeddable in a unique projective plane of order n.
These results improve the results of [1, 2].
2. On the Structure of Finite Pseudo -
Complements of Quadrilaterals

Now on, D will denote a pseudo-complement of a
quadrilateral of order n, n >3.

We call aline of D a B-Line if y is of size n - f.

It can be easily verified (see,[2]) that:
Lemma 2.1. In D,

(i) a B-Line is disjoint with exactly n(p+1) - 4 lines;

(ii) a B-Line y and a 8-Line z,y # z, are mutually
disjoint with exactly (n-1) (14y, x)+(B +y, zJ) (5Hy, z])
- 4 lines;

(iii) a point P not in a B-Line y is contained in
exactly B + 1 lines disjoint with y,

Let a; be the number of (n -i)-Lines of D. Then
a,+1 =0. Also

Y aj=n?+n-3, )

i
and, by simple counting methods,
Y ia= (n+1) (n%-3n+3)

i 2)
Y i(-Da= (n2-3n+3)n%3n+2)
Hence
S -n+2)(i-n+3)=6
Thus
3an+an-l+an-4+3an-5=3 (3)

andfori,i<n-6,a=0

Lemma 2.2, D cannot have a 0-Line.

Proof. Let a, 2 1. Then, by (3), a5 =1, and therefore,
An-1 =dp. 4=4dy. 5= 0. Let y be the 0-Line of D.
Then, by Lemma 2.1.(i,iii), y is disjoint with exactly n
- 4 lines which are mutually disjoint and each of which
is either a 2-Line or a 3-Line. Let a of these be 2-
Lines. Then, by counting the total number of flags (P,z

),Pey,ly,l|=0,weget.

o(n-2)+(n-4-0) (n-3)=n%-4n+3, ,

whence, a=3n - 9. But o < n - 4. Thus, we must have
3n-9<n-4,

from which, n < 2, a contradiction.
Lemma 2.3 If n > 18, then D cannot have a 5-Line.

Proof. Let a,_521. Then by [2], ay.5=1, and
therefore, ay.1= a,. 4 = 0. Let y be the 5 - Line. Then,
by Lemma 2.1 (i,iii), y is disjoint with exactly 6n - - 4
lines each of which is a 2-Line or a 3-Line. Besides,
each point not in y is contained in exactly 6 lines
disjoint with y. Hence, if o and B denote the number of
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the z-lines and the 3-Lines disjoint with y, respectively,
we have

o+P=6n-4
Also, by counting as in Lemma 2.2,
o(n-2) + B(n - 3)=6(n - 4n + 8)
Hence,
o=-2n+36

But, as o > 0, we get n < 18, which is a contradiction.
Lemma 2.4, In D, no 1-Line can be disjoint with any
4-Line.

Proof. Suppose y is a 1-Line of D and
o, B,y and § be the number of 1-Lines, 2-Lines, 3-
Lines and 4-Lines disjoint with y respectively. Then,
by (3),0< o + & < 2 also, by Lemma 2.1 (i), we have

C+Pp+y+8=2n-4
Now, if we count as in the Lemma 2.2, we get
on - 1)+ B(n -2) + 8(n - 3) + Y(n - 4) = 2(n - 2)%,
whence,
Y=o -23
But, ¥ 2 0, and therefore, o > 28, which forces 8 = 0.

Using the same techniques as in the proof of
Theorem 3 [2], and the Lemma 2.4, one can easily
conclude that:

Lemma 2.5, If n > 9 and y is a 1-Line of D, then any
line of D disjoint with y is a 2-Line.

Lemma 2.6. If n > 25, or, if n > 18 and D contains
at least one I-Line, then D cannot have a 4-Line.

Proof. Let y be a 4-line of D. Then, by [2], 1
<ay-4<3,and0<a,.1 <2. Also, by Lemmas 2.1
(i,iii) and 2.4, y is disjoint with exactly 5n - 4 other
lines, each of which is an i-Line, i = 2, 3, 4. Besides,
each point not on y is contained in exactly 5 lines
disjoint with y. Thus, if o, p and vy are the number of

2-Lines, 3-Lines and 4-Lines disjoint with y,
respectively, then we have

o+B+y=5n-4
Also, by counting as in Lemma 2.2, we get
on-2)+P(n-3)+yn-4)=50*-4n+7)

whence,
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n=23+y-a “)

Case 1. D contains no 1-Line. Then, by [2] and [3],
n < 25, which is a contradiction.

Case II. D has at least one 1-Line. Then, by
Lemmas 2.1 (ii), 2.4 and 2.5, o= 6, and thus, by [3],
n < 18, which is again a contradiction.

Now, using Lemmas 2.1, 2.3, and 2.6, we can state
the following theorem:

Theorem 2.7. Let D be pseudo-complement of a
quadrilateral of order n. If n > 25, or, if n > 18 and D
contains at least one 1-Line, then, the set of lines of D
consists of 3 1-Lines, 6(n - 2) 2-Lines, and n? - 5n + 6
3-Lines.

3. Embedding

Throughout this section, D will denote a pseudo-
complement of a quadrilateral of order n, containing at
least one 1-Line. Then, by theorem 2.7, if n >18, the
set of lines of D consists of three 1-Lines, 6(n - 2) 2-
Lines, and n? - 5n + 6 3-Lines. We define a simple-
graph G in which V (G) is the set of lines of D and two
vertices are joined if and only if the corresponding lines
of D are disjoint. Then, we call G the line graph of D.
We call a vertex P of G a fi-vertex if its corresponding
line of D is a B-line. Then, by Lemma 2.1:

Lemma 3.1.

(i) If P is a B-vertex, thend(P ) =n(B + 1) - 4.

(i) If P is a B-vertex and Q is a 6-vertex with P 2 Q,
then

n-5S+Bs  ifmP,0)=1,
(B +1)(y+1)-4 otherwise.

LrQ)=

(iii) For a B-vertex P, there exists a claw (P, S ) of
order B + 1.

It has been proved in [1] that
Lemma 3.2. If n > 14, then a 1-vertex P is contained
in exactly two maximal cliques H and K of size n - 1
such that each contains n - 2 2-vertices, H " K = {P },
and no 2-vertex in H is joined to any 2-vertex in K.
Lemma 3.3. If n > 14, then every i-vertex, i = 2,
3, of G not joined to a 1-vertex P of G is joined to
exactly i - 1 vertices in every maximal clique
containing P.
Lemma 3.4. Let P be a 2-vertex of G.

(1) If n>19, then there exists a claw (P,
{R1, R2, R3})
in which R is a 1-vertex and the others are 2-vertices.
Furthermore, such a claw is not extendable.

(ii) If n > 21, then there does not exist a claw (P,
{Rl, R2, R3, R4}) in which R, i =1, 2, is an i -vertex,
and each of the others is a 3-vertex.

Lemma 3.5. If n > 21, then every 2-vertex P is
contained in exactly three maximal cliques Ki, i = 1, 2,
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3, such that K| consists of a unique 1-vertex and n - 2
2-vertices, and each of the others consists of three 2-
vertices and n-3 3-vertices. Furthermore, Ki N Kj =
{P},1<i#j<3.

Proof. Let (P, {R1, R2, R3 }) be a claw in which
Ry is a l-vertex and the others are 2-vertices. By
Lemma 3.4 (i ), such a claw exists and is maximal.
Clearly, P and R are contained in a unique maximal
clique K of size n -1 containing n - 2 2-vertices. Let M
={R1, Rz} and N be the set of all vertices joined to P
but not to any vertex in M. Then, by Lemmas 3.1 and
34, NisacliqueandRse N.Let T=V (G ) - M, and
consider the expression

A=Y mP,X)(1-mR,X)-mRa))
XeT

It is easily seen that the contribution of each vertex
X to A is 1 if X € N, and is non-positive otherwise.
Hence, by Lemma 3.1 (i,ii),

[N|2A=n-2.

Thus, if K3 is a maximal clique including {P } U N,
then|Ks|> n - 1. In a similar fashion, one can prove
that R; is also contained in a maximal clique K of size
atleastn - 1. '

Suppose X € (Kin K1) - {P},1<i#j<3., Then,
as by Lemma 3.1 (ii),

KiUK|<I(P,X)+2<n+3,|KinKjl, <I(Ri R)
<5,
we have .
2n- 1 <|Li| +|Ki| < n + 8,

whencen < 10. Thus, Ki N Ky={P}, 1 <i#j< 3.

Case I. There is only one vertex X not in
Ui~ 1 Ki. Then, one of the Ki's, i = 2, 3, say K>, must
be of size n, and thus, |K3|'=n - 1. ;

Suppose X is a 2-vertex. Then, by Lemmas 3.1 (ii),
3.3, and the maximality of the Kj's, i = 2,3, X can be’
joined to at most 14 vertices in common Wwith P.
Hence, by Lemma 3.1 (ii), we should have |

n=1< 14,

whence, n < 15, which is a contradiction.

Suppose X is a 3-vertex. Then, as the structure
corresponding to G, i.e., D, has n2 - 3n + 3 points, and
by Lemmas 3.1(ii), 3.2 and 3.3, the total number of
points on the lines corresponding to the vertices in
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Kz is alson? - 3n + 3, X can be disjoint with exactly
one l-vertex in K, - {P} and 2 vertices in K, - {P}.
Also, by Lemma 3.1(ii) and the maximality of K3, X
cannot be disjoint with more than 11 vertices in Ka -
{P}. Thus, by Lemma 3.1(ii),

n+1<5 14,

whence, n < 13, which is a contradiction.

Case II. There are two vertices X and Y, outside
Ui-1 K Suppose one of X and Y, say X, is a 2-
vertex. Then, by arguing as in the second paragraph of
case I, we get

n-1<15

whence, n < 16, a contradiction.

Let both X and Y be 3-vertices. Then, as the structure
corresponding to G, i.e. D, has n2 - 3n + 3 points, and
by Lemma 3.2 and 3.3, the total number of points on
the lines corresponding to the vertices in each of K3 and
K3 is

(n-3)n-3)+3(n-2)=n2-4n+6,

there are at most 4 vertices in K2 UK3 - {P},
commonly joined to X and Y. But, by Lemmas 3.1(i)
and 3.3, each of X and Y must be joined to at least n -
1 vertices in K2 U K3 - {P}, and n>21. Hence, there
must be a vertex Zin K> - {P} joined to X but not to
Y, and a vertex T'in K3 - {P} joined to Y but not to X
such that z and T are not joined. Then, (P,. {R1,Z,T"})
is a maximal claw. Therefore, if we argue as in the first
paragraph, we conclude that X should be contained in a
maximal clique X of size at least n - 3 containing P,
and K n K; = {P}, unless n<19. So, as n>21, KNK, =
{P},i=123 and thus, every vertex joined to P must
be in one of the K 's. Also, as n > 21, and the structure
corresponding to G, i.e. D, has n? - 3n + 3 points, we
should have |Ki| < n, i = 2,3. Thus |Ki|=n, i =23.

Now we prove that K and K3 are unique. Suppose
K is a maximal clique of size n which contains P and is
different from both K> and K. Clearly, X must intersect
at least one of X2 - {P} and K5 - {P}, say, Kz - {P}.
Then, by Lemma 3.1 (i), [ K N Kz| < 12,|K n K| < 3,
and therefore, n =|K| < 15, a contradiction. Now, by
Lemmas 3.3 and 3.4 the Lemma follows.

By arguments exactly the same as in Lemnma 3.10
of the author [1], we get:

Lemma 3.6. If n>21, then a 3-vertex P of G is
contained in exactly four maximal cliques Ki, 1 £ i < 4,
of size n. Each consists of three 2-vertices and n - 3 3-
vertices. Furthermore,

KinK;={P},1<iz#j<4
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In terms of structures, Lemmas 3.2, 3.5 and 3.6,
can be stated as follows:

Lemma 3.7. A 1-line y of a pseudo-complement
of a quadrilateral of order n,n>14 is contained in exactly
two classes H and K of size n-1 such that:

(i) each class contains n-2 2-lines;

(i) H N K=y}

(iti) two lines are in the same class if and only if
they are disjoint.

Lemma 3.8. A 2-line y of a pseudo-complement
of a quadrilateral of order, n >21, containing at least one
1-line, is contained in exactly 3 classes K;, 1 i< 3,
such that:

(i) X consists of one 1-line and n-2 2-lines;

(ii) Ky, i = 2,3, consists of three 2-lines and n - 3 3-
lines;

(iii) any two distinct lines in the same class are
disjoint;

(iv) no line in K; is disjoint with all lines in
K, 1<i#j<3;

WMKnKy={y},1<i#j<3.

Lemma 3.9. A 3-line y of a pseudo-complement of a
quadrilateral of order n,n>21, containing at least one 1-
line is contained in exactly four classes Kil1 < i <4, of
size n such that:

(i) each K, consists of three 2-lines and n-3 3-lines;
MKnKi={yl1<si#j<4;

(iii) any two distinct lines in the same class are
disjoint;

(iv) no line in K; is disjoint with all lines in Kj,
1<iz#j<4.

By Lemmas 2.1(ii), 3.7, 3.8 and 3.9:

Corollary 3.10. Every point of a pseudo-complement of
a quadrilateral of order n, n>21, containing at least one
1-line is contained in a unique line of every class
described in Lemmas 3.7, 3.8 and 3.9.

By arguments exactly the same as in Lemma 3.10
of the author [1], we have:

Lemma 3.11. A pseudo - complement of a
quadrilateral of order n, n >21, containing at least one
1-line, has exactly 4n - 2 classes of the type described
in Lemmas 3.7, 3.8 and 3.9.

Let D be a pseudo-complement of a quadrilateral of
order n, n >21, containing at least one 1-line. If we add
as new points all classes described in Lemmas 3.7, 3.8
and 3.9 to every line contained in them, then by
Corollary 3.10 and Lemma 3.11, we get a larger
structure D’ whose dual (D" is a non-trivial (n+1)-
regular linear space with n2 + n- 3 points and n2+ n +1
lines. But, as Vanstone [3] has proved, (D" is
uniquely embeddable into a projective plane of order n
and the dual of a finite projective plane is also a finite
projective plane.

Thus:

Theorem. A pseudo-complement of a quadrilateral of
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2. Mullin, R.C. and S.A. Vanstone, Embedding the Pseudo
- Complement of a Quadrilateral in a Finite Projective
Plane, Ann. New York, Acad. Sci., 319, 405-412,

order n, n >21, containing at least one l-line is
uniquely embeddable into a projective plane of order n.
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