ON THE STRUCTURE OF FINITE PSEUDO-COMPLEMENTS OF QUADRILATERALS AND THEIR EMBEDDABILITY

M.S. Montakhab

Department of Mathematics, Isfahan University of Technology, Isfahan, Islamic Republic of Iran and Center for Theoretical Physics and Mathematics, AEOI, Tehran, Islamic Republic of Iran

Abstract

A pseudo-complement of a quadrilateral D of order n, n, > 3, is a non-trivial (n+1)-regular linear space with $n^2 - 3n + 3$ points and $n^2 + n - 3$ lines. We prove that if n > 18 and D has at least one line of size n - 1, or if n > 25, then the set of lines of D consists of three lines of size n - 1, 6(n - 2) lines of size n - 2, and $n^2 - 5n + 6$ lines of size n - 3. Furthermore, if n > 21 and D has at least one line of size n - 1, then D is embeddable in a unique projective plane of order n. These results improve the results of the author.

Introduction

A simple graph G consists of a non-empty finite set V(G), called the set of vertices, and a function m from the set of unordered pairs of elements of V(G) into the set $\{0,1\}$ such that for every vertex P, m(P,P) = 0. Two vertices P and Q are joined if m(P,Q) = 1. Then PQ is called an edge of G. Given a vertex P of G, the number of edges through P is called the degree of P and is denoted by d(P). Also, for two vertices P and Q of G, the total number of vertices joined to both P and Q is denoted by Q.

A claw at a vertex P of G is an ordered pair (P, S) such that S is a subset of V(G), P is joined to all vertices in S, and no two vertices in S are joined. A claw (P,S) is extendable if there is a vertex Q not in S, which is joined to P and not joined to any vertex in S. Otherwise, (P,S) is a maximal claw.

A set of pairwise joined vertices of G is called a clique. A clique K is a maximal clique if no vertex outside K is joined to all vertices in K.

A structure D is an ordered triplet (P, B, I) in which P and B are non-empty disjoint finite sets, called the sets of points and lines, respectively, and I is a subset of $P \times B$. We say a point X is contained in a line y if (X, y) belongs to I. The number of points common to two lines y and z is denoted by y, z/Z. Two distinct lines

Keywords: Maximal claw; Maximal clique; Projective plane; Regular linear space; Simple graph y and z are disjoint if [y, z] = 0, otherwise they intersect.

Given a structure D = (P, B, I), the structure $D^t = (B, P, I^t)$ is called the dual of D.

A structure D is called a non-trivial (n+1)-regular linear space, n>1, if in D:

- (i) a point is contained in exactly n+1 lines;
- (ii) two distinct points are contained in a unique common line;
- (iii) no line contains all points of D. Then n is called the order of D.

A projective plane of order n, n > 1, is a non-trival (n+1) - regular linear space in which all lines have the same size n+1. A set of four lines of a projective plane of order n is called a quadrilateral if no three of them contain a common point. A pseudo-complement of a quadrilateral of order n,n>3, is a non-trivial (n+1) - regular linear space with $n^2 - 3n + 3$ points and $n^2 + n - 3$ lines. Examples of pseudo-complements of quadrilaterals of order n are obtained by removing quadrilaterals from projective planes of order n. A structure D is said to be embeddable into a larger structure D' if D can be extended into D' by addition of new points and new lines.

In this paper, we show that if n > 18 and there exists at least one line of size n - 1, or, if n > 25, then the set of lines of a pseudo - complement of a quadrilateral of

order n consists of 3 lines of size n-1, 6(n-2) lines of size n-2 and n^2 -5n+6 lines of size n-3. Also, if n>21 and it has at least one line of size n-1, then it is embeddable in a unique projective plane of order n. These results improve the results of [1, 2].

2. On the Structure of Finite Pseudo - Complements of Quadrilaterals

Now on, D will denote a pseudo-complement of a quadrilateral of order n, n > 3.

We call a line of D a β -Line if y is of size $n - \beta$. It can be easily verified (see,[2]) that: **Lemma 2.1.** In D,

(i) a β -Line is disjoint with exactly $n(\beta+1)$ - 4 lines;

(ii) a β -Line y and a δ -Line $z, y \neq z$, are mutually disjoint with exactly (n-1) $(1+|y, z|)+(\beta+|y, z|)$ $(\delta+|y, z|)$ - 4 lines:

(iii) a point P not in a β -Line y is contained in exactly $\beta + 1$ lines disjoint with y.

Let a_i be the number of (n-i)-Lines of D. Then $a_n+1=0$. Also

$$\sum_{i} a_{i} = n^{2} + n - 3, \tag{1}$$

and, by simple counting methods,

$$\sum_{i} i a_{i} = (n+1) (n^{2} - 3n + 3)$$

$$\sum_{i} i (i-1) a_{i} = (n^{2} - 3n + 3)(n^{2} - 3n + 2)$$
(2)

Hence

$$\sum_{i} (i - n + 2)(i - n + 3) = 6$$

Thus

$$3a_n + a_{n-1} + a_{n-4} + 3a_{n-5} = 3$$
 (3)
and for $i, i \le n - 6$, $a_i = 0$

Lemma 2.2. D cannot have a 0-Line.

Proof. Let $a_n \ge 1$. Then, by (3), $a_n = 1$, and therefore, $a_{n-1} = a_{n-4} = a_{n-5} = 0$. Let y be the 0-Line of D. Then, by Lemma 2.1.(i,iii), y is disjoint with exactly n-4 lines which are mutually disjoint and each of which is either a 2-Line or a 3-Line. Let α of these be 2-Lines. Then, by counting the total number of flags (P,z)

),
$$P \in \mathcal{Y}$$
, $|\mathcal{Y}, \mathcal{Z}| = 0$, we get.

$$\alpha(n-2) + (n-4-\alpha)(n-3) = n^2 - 4n + 3$$

whence, a = 3n - 9. But $\alpha \le n - 4$. Thus, we must have

$$3n - 9 \le n - 4$$
,

from which, $n \le 2$, a contradiction.

Lemma 2.3 If n > 18, then D cannot have a 5-Line.

Proof. Let $a_{n-5}\ge 1$. Then by [2], $a_{n-5}=1$, and therefore, $a_{n-1}=a_{n-4}=0$. Let y be the 5 - Line. Then, by Lemma 2.1 (i,iii), y is disjoint with exactly 6n - 4 lines each of which is a 2-Line or a 3-Line. Besides, each point not in y is contained in exactly 6 lines disjoint with y. Hence, if α and β denote the number of

the z-lines and the 3-Lines disjoint with y, respectively, we have

$$\alpha + \beta = 6n - 4$$

Also, by counting as in Lemma 2.2,

$$\alpha(n-2) + \beta(n-3) = 6(n^2 - 4n + 8)$$

Hence,

$$\alpha = -2n + 36$$

But, as $\alpha \ge 0$, we get $n \le 18$, which is a contradiction. **Lemma 2.4.** In D, no 1-Line can be disjoint with any 4-Line.

Proof. Suppose y is a 1-Line of D and α , β , γ and δ be the number of 1-Lines, 2-Lines, 3-Lines and 4-Lines disjoint with y respectively. Then, by $(3),0 \le \alpha + \delta \le 2$ also, by Lemma 2.1 (i), we have

$$\alpha + \beta + \gamma + \delta = 2n - 4$$

Now, if we count as in the Lemma 2.2, we get

$$\alpha(n-1) + \beta(n-2) + \delta(n-3) + \gamma(n-4) = 2(n-2)^2,$$

whence,

$$\gamma = \alpha - 2\delta$$

But, $\gamma \ge 0$, and therefore, $\alpha \ge 2\delta$, which forces $\delta = 0$.

Using the same techniques as in the proof of Theorem 3 [2], and the Lemma 2.4, one can easily conclude that:

Lemma 2.5. If n > 9 and y is a 1-Line of D, then any line of D disjoint with y is a 2-Line.

Lemma 2.6. If n > 25, or, if n > 18 and D contains at least one 1-Line, then D cannot have a 4-Line.

Proof. Let y be a 4-line of D. Then, by [2], $1 \le a_{n-4} \le 3$, and $0 \le a_{n-1} \le 2$. Also, by Lemmas 2.1 (i,iii) and 2.4, y is disjoint with exactly 5n - 4 other lines, each of which is an i-Line, i = 2, 3, 4. Besides, each point not on y is contained in exactly 5 lines disjoint with y. Thus, if α , β and γ are the number of 2-Lines, 3-Lines and 4-Lines disjoint with y, respectively, then we have

$$\alpha + \beta + \gamma = 5n - 4$$

Also, by counting as in Lemma 2.2, we get

$$\alpha(n-2) + \beta(n-3) + \gamma(n-4) = 5 (n^2 - 4n + 7)$$

whence.

$$n = 23 + \gamma - \alpha \tag{4}$$

Case I. D contains no 1-Line. Then, by [2] and [3], $n \le 25$, which is a contradiction.

Case II. D has at least one 1-Line. Then, by Lemmas 2.1 (ii), 2.4 and 2.5, α = 6, and thus, by [3], $n \le 18$, which is again a contradiction.

Now, using Lemmas 2.1, 2.3, and 2.6, we can state the following theorem:

Theorem 2.7. Let D be pseudo-complement of a quadrilateral of order n. If n > 25, or, if n > 18 and D contains at least one 1-Line, then, the set of lines of D consists of 3 1-Lines, 6(n - 2) 2-Lines, and $n^2 - 5n + 6$ 3-Lines.

3. Embedding

Throughout this section, D will denote a pseudo-complement of a quadrilateral of order n, containing at least one 1-Line. Then, by theorem 2.7, if n > 18, the set of lines of D consists of three 1-Lines, 6(n-2) 2-Lines, and $n^2 - 5n + 6$ 3-Lines. We define a simple-graph G in which V(G) is the set of lines of D and two vertices are joined if and only if the corresponding lines of D are disjoint. Then, we call G the line graph of G. We call a vertex G of G a G-vertex if its corresponding line of G is a G-line. Then, by Lemma 2.1:

Lemma 3.1.

- (i) If P is a β -vertex, then $d(P) = n(\beta + 1) 4$.
- (ii) If P is a β -vertex and Q is a δ -vertex with $P \neq Q$, then

$$l(P,Q) = \left\{ \begin{array}{ll} n-5+\beta\delta & \text{if } m(P,Q) = 1, \\ (\beta+1)(\gamma+1)-4 & \text{otherwise.} \end{array} \right\}$$

(iii) For a β -vertex P, there exists a claw (P, S) of order $\beta + 1$.

It has been proved in [1] that:

Lemma 3.2. If n > 14, then a 1-vertex P is contained in exactly two maximal cliques H and K of size n - 1 such that each contains n - 2 2-vertices, $H \cap K = \{P\}$, and no 2-vertex in H is joined to any 2-vertex in K. **Lemma 3.3.** If n > 14, then every i-vertex, i = 2, 3, of G not joined to a 1-vertex P of G is joined to exactly i - 1 vertices in every maximal clique containing P.

Lemma 3.4. Let P be a 2-vertex of G.

(i) If n>19, then there exists a claw $(P, \{R_1, R_2, R_3\})$

in which R_1 is a 1-vertex and the others are 2-vertices. Furthermore, such a claw is not extendable.

(ii) If n > 21, then there does not exist a claw $(P, \{R_1, R_2, R_3, R_4\})$ in which R_i , i = 1, 2, is an i-vertex, and each of the others is a 3-vertex.

Lemma 3.5. If n > 21, then every 2-vertex P is contained in exactly three maximal cliques K_i , i = 1, 2,

3, such that K_1 consists of a unique 1-vertex and n-2 2-vertices, and each of the others consists of three 2-vertices and n-3 3-vertices. Furthermore, $K_i \cap K_j = \{P\}, 1 \le i \ne j \le 3$.

Proof. Let $(P, \{R_1, R_2, R_3\})$ be a claw in which R_1 is a 1-vertex and the others are 2-vertices. By Lemma 3.4 (i), such a claw exists and is maximal. Clearly, P and R_1 are contained in a unique maximal clique K_1 of size n -1 containing n - 2 2-vertices. Let $M = \{R_1, R_2\}$ and N be the set of all vertices joined to P but not to any vertex in M. Then, by Lemmas 3.1 and 3.4, N is a clique and $R_3 \in N$. Let T = V(G) - M, and consider the expression

$$A = \sum_{X \in T} m(P, X) (1 - m(R_1, X) - m(R_{2,x}))$$

It is easily seen that the contribution of each vertex X to A is 1 if $X \in N$, and is non-positive otherwise. Hence, by Lemma 3.1 (i,ii),

$$|N| \ge A = n - 2$$
.

Thus, if K_3 is a maximal clique including $\{P\} \cup N$, then $|K_3| \ge n - 1$. In a similar fashion, one can prove that R_2 is also contained in a maximal clique K_2 of size at least n - 1.

Suppose $X \in (K_i \cap K_J) - \{P\}, 1 \le i \ne j \le 3$. Then, as by Lemma 3.1 (ii),

$$|K_i \cup K_j| \le l(P, X) + 2 \le n + 3, |K_i \cap K_j|, \le l(R_i, R_j)$$

 $\le 5,$

we have

$$2(n-1) \le |L_i| + |K_J| \le n+8$$
,

whence $n \le 10$. Thus, $K_i \cap K_J = \{P\}, 1 \le i \ne j \le 3$.

Case I. There is only one vertex X not in $U_{i=1}^3 K_i$. Then, one of the K_i 's, i = 2, 3, say K_2 , must be of size n, and thus, $|K_3| = n - 1$.

Suppose X is a 2-vertex. Then, by Lemmas 3.1 (ii), 3.3, and the maximality of the K_i 's, i = 2,3, X can be joined to at most 14 vertices in common with P. Hence, by Lemma 3.1 (ii), we should have

$$n = 1 \le 14$$
,

whence, $n \le 15$, which is a contradiction.

Suppose X is a 3-vertex. Then, as the structure corresponding to G, i.e., D, has n^2 - 3n + 3 points, and by Lemmas 3.1(ii), 3.2 and 3.3, the total number of points on the lines corresponding to the vertices in

 K_2 is also $n^2 - 3n + 3$, X can be disjoint with exactly one 1-vertex in $K_1 - \{P\}$ and 2 vertices in $K_2 - \{P\}$. Also, by Lemma 3.1(ii) and the maximality of K_3 , X cannot be disjoint with more than 11 vertices in $K_3 - \{P\}$. Thus, by Lemma 3.1(ii),

$$n + 1 \le 14$$
,

whence, $n \le 13$, which is a contradiction.

Case II. There are two vertices X and Y, outside $U_{i=1}^3 K_i$. Suppose one of X and Y, say X, is a 2-vertex. Then, by arguing as in the second paragraph of case I, we get

$$n - 1 \le 15$$

whence, $n \le 16$, a contradiction.

Let both X and Y be 3-vertices. Then, as the structure corresponding to G, i.e. D, has $n^2 - 3n + 3$ points, and by Lemma 3.2 and 3.3, the total number of points on the lines corresponding to the vertices in each of K_2 and K_3 is

$$(n-3)(n-3) + 3(n-2) = n^2 - 4n + 6$$

there are at most 4 vertices in $K_2 \cup K_3 - \{P\}$, commonly joined to X and Y. But, by Lemmas 3.1(ii) and 3.3, each of X and Y must be joined to at least n-1 vertices in $K_2 \cup K_3 - \{P\}$, and n>21. Hence, there must be a vertex Z in $K_2 - \{P\}$ joined to X but not to Y, and a vertex T in $K_3 - \{P\}$ joined to Y but not to X such that z and T are not joined. Then, $(P, \{R_1, Z, T^*\})$ is a maximal claw. Therefore, if we argue as in the first paragraph, we conclude that X should be contained in a maximal clique K of size at least n-3 containing P, and $K \cap K_i = \{P\}$, unless $n \le 19$. So, as n > 21, $K \cap K_1 = \{P\}$, i = 1,2,3 and thus, every vertex joined to P must be in one of the K_i 's. Also, as n > 21, and the structure corresponding to G, i.e. D, has $n^2 - 3n + 3$ points, we should have $|K_i| \le n$, i = 2,3. Thus $|K_i| = n$, i = 2,3.

Now we prove that K_2 and K_3 are unique. Suppose K is a maximal clique of size n which contains P and is different from both K_2 and K_3 . Clearly, K must intersect at least one of $K_2 - \{P\}$ and $K_3 - \{P\}$, say, $K_2 - \{P\}$. Then, by Lemma 3.1 (ii), $|K \cap K_2| \le 12$, $|K \cap K| \le 3$, and therefore, $n = |K| \le 15$, a contradiction. Now, by Lemmas 3.3 and 3.4 the Lemma follows.

By arguments exactly the same as in Lemma 3.10 of the author [1], we get:

Lemma 3.6. If n>21, then a 3-vertex P of G is contained in exactly four maximal cliques K_i , $1 \le i \le 4$, of size n. Each consists of three 2-vertices and n-3 3-vertices. Furthermore,

$$K_i \cap K_i = \{P\}, 1 \le i \ne j \le 4$$

In terms of structures, Lemmas 3.2, 3.5 and 3.6, can be stated as follows:

Lemma 3.7. A 1-line y of a pseudo-complement of a quadrilateral of order n,n>14 is contained in exactly two classes H and K of size n-1 such that:

- (i) each class contains n-2 2-lines;
- (ii) $H \cap K = \{y\}$;
- (iii) two lines are in the same class if and only if they are disjoint.

Lemma 3.8. A 2-line y of a pseudo-complement of a quadrilateral of order, n > 21, containing at least one 1-line, is contained in exactly 3 classes K_i , $1 \le i \le 3$, such that:

- (i) K_1 consists of one 1-line and n-2 2-lines;
- (ii) K_i , i = 2,3, consists of three 2-lines and n 3 3-lines;
- (iii) any two distinct lines in the same class are disjoint;
- (iv) no line in K_i is disjoint with all lines in K_i , $1 \le i \ne j \le 3$;
- (v) $K_i \cap K_J = \{y\}, 1 \le i \ne j \le 3$.

Lemma 3.9. A 3-line y of a pseudo-complement of a quadrilateral of order n,n>21, containing at least one 1-line is contained in exactly four classes $K_i 1 \le i \le 4$, of size n such that:

- (i) each K_i , consists of three 2-lines and n-3 3-lines;
- (ii) $K_i \cap K_J = \{y \}, 1 \le i \ne j \le 4;$
- (iii) any two distinct lines in the same class are disjoint;
- (iv) no line in K_i is disjoint with all lines in K_j , $1 \le i \ne j \le 4$.

By Lemmas 2.1(iii), 3.7, 3.8 and 3.9:

Corollary 3.10. Every point of a pseudo-complement of a quadrilateral of order n, n>21, containing at least one 1-line is contained in a unique line of every class described in Lemmas 3.7, 3.8 and 3.9.

By arguments exactly the same as in Lemma 3.10 of the author [1], we have:

Lemma 3.11. A pseudo - complement of a quadrilateral of order n, n > 21, containing at least one 1-line, has exactly 4n - 2 classes of the type described in Lemmas 3.7, 3.8 and 3.9.

Let D be a pseudo-complement of a quadrilateral of order n, n > 21, containing at least one 1-line. If we add as new points all classes described in Lemmas 3.7, 3.8 and 3.9 to every line contained in them, then by Corollary 3.10 and Lemma 3.11, we get a larger structure D' whose dual $(D')^i$ is a non-trivial (n+1)-regular linear space with $n^2 + n - 3$ points and $n^2 + n + 1$ lines. But, as Vanstone [3] has proved, $(D')^i$ is uniquely embeddable into a projective plane of order n and the dual of a finite projective plane is also a finite projective plane.

Thus:

Theorem. A pseudo-complement of a quadrilateral of

order n, n > 21, containing at least one 1-line is uniquely embeddable into a projective plane of order n.

References

1. Montakhab, M.S. Embedding of Finite Pseudo-Complement of Quadrilaterals, J. of Stat. Plann. and Inf., 13, 103-110, (1986).

- 2. Mullin, R.C. and S.A. Vanstone, Embedding the Pseudo Complement of a Quadrilateral in a Finite Projective Plane, Ann. New York, Acad. Sci., 319, 405-412, (1979).
- 3. Vanstone, S.A. The Extendibility of (r,1)- Designs. Proc. Third Manitoba Conference on Numerical Math., 409-418, (1973).