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Abstract
An estimation problem of the mean p of an inverse Gaussian distribution
IG(u, c?p) with known coefficient of variation c is treated as a decision prob-
lem with entropy loss function: A class of Bayes estimators is constructed, and
shown to include MRSE estimator as its closure. Two important members of
this class can easily be computed using continued fractions.

1. Introduction
We assume that the distribution of a random vari-
able X is an inverse Gaussian with known coefficient
of variation ¢, denoted by IG(i, ¢ u), with the prob-
ability density function

foow=(

2
L )lix";'exp {(-x—'—"i Y, x>0,u>0,¢>0.
2nc? 2clux

(1.1)

The distribution is known as the first passage time
distribution of a Brownian motion process. Because of
the inverse relationship between the cumulant generat-
ing function of the first passage time distribution and
that of the Gaussian distribution, Tweedie {10] pro-
posed the name inverse Gaussian for the distribution.
When the population mean is equal to unity, the distri-
bution is often referred to as the standard wald distri-
bution. A good summary of the basic properties of the
distribution can be found in Folks and Chhikara [3]. In
this case E(X)= p and V(X)= c?u?, with the coefficient
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of variation c.
Let X,, X,, ...

size n from this distribution. Then ()? , V) form a pair
of independent, sufficient but not complete statistics

for p, where X=L3% X; and V=32, (L-L). Now X
n Xi X

is distributed as /G(l, nc"?p) and pc?V is a Chi-Square

variate with (n-1) degrees of freedom. The statistic b=

X Vis ancillary with respect to .

The family of distributions (1.1) is invariant under
the scale changes, and  is actually a scale parameter,
this fact suggests looking at estimators which are
equivariant under changes of scale x; — ax;, a>0. The

, X, (n>3) be a random sample of

estimator & (x,, x,, ... , x,) is scale equivariant if & (ax,,
ax,, ..., ax,)= aﬁ(x,,xz, s X)), Va>0,and all x,, ...,
X,

If one considers the loss functions, which are invari-
ant under the scale changes, then one can construct scale
equivariant estimators,

In this paper, we consider the Kullback-Leibler in-
formation number (or the entropy distance) between two
distributions of an n-independent inverse Gaussian vari-
able. Kullback [8] described this quantity as the mean
information from the likelihood function f(X, 6) against
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fiX, d). This loss is also equivalent to the minimum dis-
crimination information statistic in Kullback {8]. The
resulting loss is defined as

Lm,d)'—'—‘Ep {ln [rﬁ;lfp (X1)/H;l=lfd(xt)]}

n. . n n X n
cap@y.Lp ZmXi, g1 ZimX 491,
MG T T M T B
= (12)

[£-1nd-1]+2_[d+H 7]
u 2¢t u d

1

n
2

and so this measure is a linear combination of two loss
functions, and is called an extended unseparable loss

function. For the losses L, (1, d)= 4-+5.- 2 and
1l

Lz(lisd)=(ﬁ -1)% (1.3)

the Best Invariant estimator and the Bayes estimator
were obtained by Hirano and Iwase [6] and Joshi and
Shah [7]. In this paper we obtain the Bayes and mini-
max estimator under the scale invariant loss

Lwdy=2 -1nd-1,
Hoou

(14)

which is called the entropy loss function.
Note that the MLE of p is

—se 4Tk
HME"—ZT“ +(1+C—4)2}

where T=1+ X—E‘f, and in this case um;,alfﬁ and V!
are all scale equivariant estimators.

2. Minimum Risk Scale Equivariant Estimator
We start by noting that to find an MRE estimator,

we need consider only non-randomized rules 5()?,V)

based on the sufficient statistics [9]. Let 5()—(_,V) be a
scale equivariant estimator, then

8(}ZV)=;—8(a5(_,a'lV), Y a>0.

Letting a=YX 'V, then all scale equivariant estimators
have to be expressed in the form '
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5x,v)=VT o(B),

where U=XV ", and B=XV. There exists at least one

estimator of this form which has finite risk under the
desired loss function.

The joint distribution of B and YU g(B)p1 is indepen-
dent of U, so the risk of any equivariant estimator

YU ¢(B) with finite risk has the representation

ROT 9(8)) =E, N 2B)._, JT06),
1} (T
=E [Eys WU 9(0)-n VU 9(0)-115)) . (2.1)

It follows that the minimum risk scale equivariant
estimator YU g*(b), if it exists, must satisfy

Epat [VU ¢*®) - n VU 0*(b) -1) 1b] =
min By (U 60) -n VT 60) nVT 9 0)-D1b] 5 o)

Using (2.2), it is easily shown that
g*®)=[ENT 1b)"
{" fu, b) du
— 0

2.3)
,0 Vif(u,b) du

where f(u, b) is the joint distribution of U and B. So the
unique MRE estimator which is recognizable as Pitman-
type estimator is

Tvme =W [ENT 16)]"!

Vi | :f(u,b) du

,:ﬁf(u,b)du
Now, note that
e 2.1 alcp?
[Xpm (D) =(aze—7— ¥>0
2n%°
and
ﬁ'(V)=——-1H——-v"2—3e"2;Vi', v>0
rely2s cm
2 ‘ ‘
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and after some calculations, we have ten for computational purposes by using a continued
fraction as follows. For n=2k + 1, k=1.2,...
ne?
vy 69 = ﬂe b" -'cl' _(r+ﬁﬁ, .
E2 "r(" 1) " RE:_Z_("“'E')+ 1 1 L1
T T cady cad (-2l
u>0,b>0. T + e et o
Now using Forn=2k+2,k=12,...
l xfle &7 = 5)71(](21 o; a % {8(1-%)+ 1 1 1 }
ME= == ’
Re(8)>0. Re(p) >0, 24) T ead ey cuBD T
T T T knVT /)

we have

Numerical values of K,(x) and K (x) for x= 0.1(0.1)20

o = a0 Bl 1 WfBen are calculated in Abromowitz and Stegun [1]. It is easily
' fubydu | uile 2@ 3T g5 du . ~ :
0 =20 shown that for large n the estimator e is asymptoti-

'“ﬁf(u,b) du ‘"u;-ze‘%gé';jz-@*ﬁ “ g cally equal to the MLE, .
0 0
— 3. Bayes Estimator
b+ Since W is a scale parameter, the following density
2 —"E@‘—'—)‘ K2 (——E)) function was considered by Joshi and Shah [7].

(\I'+—>/zr T P

(ap+b .
b+L (ap+5) lfa, 20’ R
DY (Y 2 Y S g . XA ) V’alip(ll)=’dwe g ﬂ. PEe G.1)
(r+v__)/2(- 1 27 2R \\0 otherwise

This is a broader family of distributions which has

Y nB+n) .
Kre——) — conjugate prior (p=2), inverted Gamma prior (p < 0 &
=y ¢ . XV e P (p°2) m prior &
b Anon), a= 0), Gamma prior (p > 0 & f= 0) and vague prior (p
2 A < 0 & a= f= 0) as the particular cases, so the Bayes

estimator under entropy loss is
where, K g (.) is modified Bessel function of order f [S],

S0 o~ 1
HBayes = mmmmrsaee
Epllx, v]
XV +n) -
_ IQ:(V"( ) Bap -(nS)+32)
WE:W( "XX )% 2 c2 ‘o H27e H d],l.
n+Xv &_I(Vn(XV+n)) = Bapl (s +32)
2 c? '0 Hz-e bl
_ k(AP where
=X 2 2.5)
T Ko (& X
T Ks 1(6217) sl=."__[1+£’l_+l%2xl-]

2eX

It must be noted that from the recurrence relation and

Kv-1(2) - Kv+l(Z)"- Kv(z) the estimator ums is rewrit-
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by 2
s=iX (14268,
2c? nXx
Using (2.4)
%+p+1
28955 Kepa2VS5152)
W Bayes ==L -
ayes = -

_+p
2(~;—2)27K§+p<2{ 5152)
1

=(§—2.)% K_r21+p+-1(2V SISZ)

(3.2)
S Kgﬂ,(zwlslsg)

Now, we can easily see that whenp=-1, a0 -0

and B — 0 (i.e. for vague prior Ili)‘ :quE:ﬁgm,. That is
for the entropy loss function the MRE rule fiage is the

limit, im Haayes Of the Bayes rule against the
a—-0B—-0

priori yop.-1(). It is easily seen that the limit as o — 0

and B — O exists and can be taken inside the integral in

(3.2). (And by using the type of argument implied by the

main theorem of Farrell [2], it can be shown that flage is

admissible Pitman-type estimator).

4. General Minimum Risk Scale Equivariant
Estimator
In this section, we give a general form (for any prob-
ability density function with scale parameter) of the
MRE estimator when the loss function is the entropy
loss function. Let X, ..., X, have a joint probability
density function

L xn | Xy 950 4.1
0" 6 @8 ]

where 6 is an unknown scale parameter. Then
Proposition 4.1. The minimum risk scale equivariant

estimator of 6 under the entropy loss function (the so
called Pitman-type estimator of 6) is

[mt’”f(xlt, v Xnf) dl
0

- @.2)
)0 Cfoal, ... xd)dt
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Proof. Let X= (X, ..., X,) be distributed according to
4.1) and Z= (Z,, ..., Z,) with z.-=§‘i,i= 1, ..., nl,

and L:%. Suppose that there exists a"scale

equivariant estimator 8, of @ with finite risk. Then under
the entropy loss function (1.4) an MRE estimator of 8 is

5*00=2®) yhere w¥(z)is given by
0*(2)

@*(2)=Ega [Go X)Z=2].

Let §y(X)=X,. To compute E,_, [X, | Z= z] which
exists, make the one to one transformation Z.-=—X-i,

]
i=1,.., n-1 andU=X . Then
121,... 2010 @ o oes Znl, W) = U UZ), . o U1, U)

and

L3
fU | Bez (u)___ u f({"zlv seey uzh'b u)

f:v”‘f(w;, ERTRRY Y

Hence,

} VE(va, ..., Vis, V) dv
EgalXnlZi=2,....,2p1=201]= 2 .

':v"lf(vzl, ...,vz..i, Vdv

Now, let v= tx,, then we have

xnrt'.'f(xlt,...,x.t)dt
EgaXalZ=z]= 2 .

}:t"lfmt, e Xed) dt

So,
“ nl
. Jot f(xlt,...,xd)dt.
EO-I[XA|Z=Z] hd
,o Cfoat, ..., xd) dt
This completes the proof.

Gleser and Healy [4] gave scale equivariant estima-
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tor, awz, of the mean 6 for the N(8, a6%) with minimum

risk for all @ when the loss function is the squared error.
Hirano and Iwase {6] derived this estimator for the scale

equivariant loss % - g 2. From the above proposition,

the minimum risk scale equivariant estimator of 6,
which is positive and a scale parameter, is given by

e = (@ nS " 121 B) 43)
I4B)
where
— -, -L . n
B=a'nX @'nSy) 3, S2=;1{§X"2
and

. xa)?
In(a)= { ox"'e'-T dx

when the loss is the entrophy loss function (1.3). In the
normal case Gleser and Healy [4] showed that

-— -1 A
B X+ +4an+n'S)? } <6< Oue
2a(n+1)

also Hirano and Iwase [6] showed that

OE<OS Lt (X +(X 2+4a(n-2)n'1S;);—}

2a(n-2)

where 5 was the MRE estimator under the loss (1.3). In
our case it can be easily shown that

amsa.wsza" (X + @ +dan-DnSp ) (4.4)

(n-1)
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