AMENABLE WEIGHTED HYPERGROUPS

Kh. Pourbarat

Department of Mathematics, Tarbiat Modarres University, Tehran, Islamic Republic of Iran

Abstract

In this paper among many other things we prove that the topological left amenability and left amenability of a weighted hypergroup (K, ω) are equivalent. For a normal subgroup H of K, we define a weight function ω° on K/H and obtain connection between left amenability of (K, ω) and $(K/H, \omega^{\circ})$. Let H be a compact subhypergroup of K. We define the weight function ω° on K//H and obtain connection between left amenability of (K, ω) and $(K//H, \omega^{\circ})$.

Introduction

Throughout this paper, K will denote a hypergroup with a fixed left Haar measure λ. Unless otherwise specified our notation will follow that of [3]. The following notations are different from those in [3].

The point mass at $x \in K$

The characteristic function of the non-empty set $\chi_{_{A}}$ $A \subset K$

||f|| = ess sup |f|

The involution on K is denoted by $x \rightarrow x^-$. If f is a Borel function on K and $x,y \in K$ the left translation f or L_f and the right translation f_y or R_y are defined by $L_y(y) = f(y) = f(y)$ $R_{\mathbf{x}}f(x) = \int_{\mathbf{K}} f d(\delta x * \delta y) = f(x * y)$, if the integral exists. The function f is given by f(x) = f(x). The integral $\int d\lambda(x)$ is often denoted by $\int ... dx$.

Let K be a hypergroup and let $\rho: K \to (0, \infty)$ be a Borel function. Let X be a Banach space of measures of equivalence classes of functions on K. We define the corresponding weighted space as $X(\rho) = \{f \mid \rho f \in X\}$. We norm $X(\rho)$ so that the map $f \to \rho f$: $X(\rho) \to X$ becomes an

In what follows we shall use one of the following spaces for

 $M(K)=\{\mu \mid \mu \text{ is a regular Borel measure. } \|\mu\|=\|\mu\|$ $(K)<\infty\},$

Keywords: Amenable; Hypergroup; Weight

1990 AMS Mathematics Subject Classification: Primary 43A07

 $L^{1}(K) = \{f \mid f \text{ Borel measurable and } \int |f| dx < \infty \},$ $L^{\infty}(K) = \{f \mid f \text{ Borel measurable and } \|f\|_{\infty} < \infty\},$

 $RUC(K) = \{ f \in L^{\infty}(K) \mid x \to f \text{ is continuous from } K \text{ to } \}$ $(L^{\infty}(K), \| \|_{\perp})\},$

 $LUC(K) = \{ f \in L^{\infty}(K) \mid x \to f_x \text{ is continuous from } K \text{ to } \}$ $(L^{\infty}(K), \| \| \|)\},$

 $UC(K) = RUC(K) \cap LUC(K)$.

Definition 1. A function $\omega: K \to [1, \infty)$ is called a Borel weight function on K, if

(i) for every $t \in spt(\delta_{x} * \delta_{y})$, $\omega(t) \leq \omega(x)\omega(y)$,

(ii) w(e) = 1 (e is the unique element of K such that $\delta_x^* \delta_z = \delta_x^* \delta_z = \delta_x$, for all $x \in K$),

(iii) w is Borel measurable and locally bounded.

We shall use $M_{\omega}(K)$, $L_{\omega}^{\infty}(K)$, $L_{\omega}^{1}(K)$, $RUC_{\omega}(K)$, $LUC_{\omega}(K)$ and $UC_{\omega}(K)$ instead of M(K) (ω) , $L^{\infty}(K)$ $(\frac{1}{\omega})$, $L^{1}(K)(\omega)$, $RUC(K)(\frac{1}{\omega})$, $LUC(K)(\frac{1}{\omega})$ and $UC(K)(\frac{1}{\omega})$. We shall use $\| \|_{\alpha}$ and $\| \|_{\alpha}^{1}$ respectively for norms of $L_{\omega}^{\infty}(K)$ and $L_{\omega}^{1}(K)$.

Lemma 2. $L_{\omega}^{\infty}(K)$ is a translation invariant Banach space containing the constant functions and ω .

Proof. Let
$$f \in L^{\infty}_{\omega}(K)$$
 and $s \in K$.
$$\left| \frac{sf}{\omega}(t) \right| = \left| \frac{f(s^*t)}{\omega(t)} \right| = \left| \int_{K} \frac{f(x)}{\omega(t)} d(\delta_s * \delta_s)(x) \right| \le \left| \int_{K} \frac{|f(x)|}{\omega(x)} \frac{\omega(x)}{\omega(t)} d(\delta_s * \delta_s)(x) \right|$$

(3)

$$\leq \omega(s) \int_{K} \frac{|f|}{\omega}(x) d(\delta_{s} * \delta_{t})(x) = \omega(s)_{s} (\frac{|f|}{\omega})(t).$$
Since $\frac{f}{\omega} \in L^{\infty}(K)$, $s(\frac{|f|}{\omega}) \in L^{\infty}(K)$ and $\|s(\frac{|f|}{\omega})\|_{\infty} \leq \|(\frac{f}{\omega})\|_{\infty}$

[3, 3.1 B]. Thus $sf \in L^{\infty}_{\omega}(K)$ and $||sf||_{\omega} \le ||f||_{\omega} \omega(s)$. Hence $L^{\infty}_{\omega}(K)$ is translation invariant.

The proof of other statements are clear. \square

Let K be a hypergroup with a fixed left Haar measure λ and ω be a Borel weight function on K. Let X be a left translation invariant subspace of $L^{\infty}_{\omega}(K)$ containing the constant functions. A linear functional m on X is called a mean if $f \geq 0(\lambda a.e)$ implies $m(f) \geq 0$ and m(1) = 1. A mean m on X is called a left invariant mean [LIM] if $m(L_x f) = m(f)$ for all $x \in K, f \in X$. We call (K, ω) , the hypergroup K with the weight function ω and (K, ω) is called left amenable, if there is a LIM on $L^{\infty}_{\omega}(K)$.

Let $f \in L^{\infty}_{\omega}(K)$ and $p \in L^{1}_{\omega}(K)$, the functions $f.p.p.f \in L^{\infty}_{\omega}(K)$ are defined by,

$$\langle f.p.q \rangle = \langle f.p^*q \rangle, \langle p.f.q \rangle = \langle f.q^*p \rangle q \in L^1_{\omega}(K)$$
. (1)

This is in fact the module operation defined on page 50 of [1].

Let $P_{\omega}(K) = \{ p \in L^{1}_{\omega}(K) / p \ge 0, \int p(x) dx = 1 \}$. A mean m on $L^{\infty}_{\omega}(K)$ is said to be a topological left invariant mean [TLIM] if m(f,p) = m(f) ($f \in L^{\infty}_{\omega}(K)$, $p \in P_{\omega}(K)$). (K,ω) is called topologically left amenable, if there is a TLIM on $L^{\infty}_{\omega}(K)$.

Henceforth, the weight function is continuous.

Lemma 3. Let $f \in L^{\infty}_{\omega}(K)$, $p \in L^{1}_{\omega}(K)$ and $s, t \in K$. Then, (a) $pf(x) = \langle f, -p \rangle$,

(b) $p.f(s*t) = \langle f, -(-p) \rangle$,

(c) $\|(pf)\mathbf{t} - pf\|_{\infty} \le \|f\|_{\infty} \|_{p-p} \|_{\infty}^{1}$,

(d) $f.p(x) = \langle f, \Delta(x^{-})p_{-} \rangle$,

(e) $f.p(s*t) = \langle f, \Delta(s)\Delta(t)(p_s) \rangle_t >$,

 $(f) \|_{s}(f,p) - f.p\|_{m} \le \|f\|_{m} \|\Delta(s^{s})p_{s^{-}} - p\|_{m}^{-1}$

(g) Let f be continuous. Then

$$\left|\frac{f}{\omega}(s^*t) - \frac{f(s^*t)}{\omega(s)}\right| \le \left|\left|f\right|\right|_{\omega} \sup \left\{\left|1 - \omega(t)\right|, \left|\frac{1}{\omega(t^-)} - 1\right|\right\}$$

Proof. We only prove statements (d), (e), (f) and (g). The proof of other statements are similar.

Proof of (d). By definition of $f.p, f.p(x) = \int f(y^*x)p(y)dy$. Since the modular function $\Delta[3]$ is constant on spt $(\delta_* * \delta_*)$

with value $\Delta(x)\Delta(y)$, for all $x, y \in K$, then $p\Delta(y^*x) = p(y^*x)\Delta(y^*x)$. Hence $\int f(y)p_{x^{-}}(y)\Delta(x^{-})dy = \int f(y)p(y^*x^{-})\Delta(y^*x^{-})\Delta(y^{-})dy = \int f(y)p\Delta(y^*x^{-})\Delta(y^{-})dy = \int f(y^*x)p\Delta(y)\Delta(y)dy$

Formulas (2) and (3) imply $\langle f, \Delta(x^-)p_x \rangle = f.p(x)$.

 $= \int f(y^*x) p(y) \Delta(y) \Delta(y) dy = \int f(y^*x) p(y) dy.$

Proof of (e). $f.p(s^*t) = \int f.p(z)d(\delta_i^*\delta_i)(z) = \int d(\delta_i^*\delta_i)(z) \int f(y)\Delta(z^*)p_{z^*}(y)dy$ $= \int f(y)dy \int \Delta(z^*)p_{z^*}(y)d(\delta_i^*\delta_i)(z) = \int f(y)\Delta(s^*)\Delta(t^*)_{y}p(t^*s^*)dy$ $= \int f(y)\Delta(s^*)\Delta(t^*)(p_{z^*})_{y}(y)dy = \langle f, \Delta(s^*)\Delta(t^*)(p_{z^*})_{y}\rangle.$

Proof of (f).
$$|\frac{(f(p)-(f(p)))(t)}{\omega(t)}| = |\frac{f(p)(f(p)-f(p))(t)}{\omega(t)}| = |\frac{f(p)(f(p)-f$$

$$\left|\frac{\langle f, \Delta(t^{\tilde{}}) \Delta(s^{\tilde{}}) (p_s -)_{t-} \rangle - \langle f, \Delta(t^{\tilde{}}) p_{t-} \rangle}{\omega(t)}\right|$$

$$= |\frac{\langle f, (\Delta(s^{-})p_{s^{-}}-p)_{t^{-}}\Delta(t^{-})\rangle}{\omega(t)}|_{s}$$

Thus $||_s(f,p) - fp||_{\omega} \le ||f||_{\omega} ||\Delta(s)|_{p_s} - p||_{\omega}^1$

Proof of (g).

$$\left|\frac{f}{\omega}(s^*t) - \frac{f(s^*t)}{\omega(s)}\right| = \left|\int f(x) \left(\frac{1}{\omega(x)} - \frac{1}{\omega(s)}\right) d\left(\delta_s * \delta_t\right)(x)\right| \le$$

$$||f||_{\omega} \max \{|1 - \frac{\omega(x)}{\omega(s)}| x \in \operatorname{spt} \delta_s * \delta_t\}$$

If
$$\frac{\omega(x)}{\omega(s)} \ge 1$$
, since $x \in spt(\delta_s * \delta_t)$, $\omega(x) \le \omega(s) \omega(t)$, we

get
$$0 \le \frac{\omega(x)}{\omega(s)} - 1 \le \omega(t) - 1$$
. If $\frac{\omega(x)}{\omega(s)} \le 1$ since $x \in \operatorname{spt}(\delta_s * \delta_t)$,

 $s \in (\delta_x * \delta_{t-})$, thus $\omega(s) \le \omega(x) \omega(t_-)$. So,

$$0 \le 1 - \frac{\omega(x)}{\omega(s)} \le 1 - \frac{1}{\omega(t^{-})}$$
. Therefore

$$|1-\frac{\omega(x)}{\omega(s)}| \le \max\{|1-\frac{1}{\omega(t)}|, |\omega(t)-1|\}$$
. Hence,

$$|\frac{f}{\omega}(s^*t) - \frac{f(s^*t)}{\omega(s)}| \le ||f||_{\omega} \sup \{|1 - \omega(t)|, |\frac{1}{\omega(t)} - 1|\} \square$$

Proposition 4. $L^{\infty}_{\omega}(K)$. $L^{1}_{\omega}(K) = RUC_{\omega}(K) = \{f \in L^{\infty}_{\omega}(K) | x \rightarrow f \text{ is norm continuous at e} \}$.

Proof. Let $f \in L_{\omega}^{\infty}(K)$, $p \in L_{\omega}^{1}(K)$ and $s, t \in K$

$$|f(\frac{f.p}{\omega})(s) - \frac{f.p}{\omega}(s)| = |\frac{f.p}{\omega}(f^*s) - \frac{f.p}{\omega}(s)| \le |\frac{f.p}{\omega}(f^*s) - \frac{f.p(f^*s)}{\omega(s)}|$$

$$+\left|\frac{f.p(f^*s)}{\omega(s)} - \frac{f.p(s)}{\omega(s)}\right| \le ||fp||_{\omega} \sup \left\{|1 - \omega(t)|, |1 - \frac{1}{\omega(t^-)}|\right\}$$

s+IIf $|I_{\omega}||\Delta(t^{-})p_{t^{-}}p\mathbf{I}_{\omega}^{1}$. [cf. Lemma 3 f,g] Since ω is continuous at e and $t \rightarrow \Delta(t)p_{t^{-}}$ from K to $L_{\omega}^{1}(K)$ is continuous, then $f.p \in RUC_{\omega}(K)$. The rest of the proof is similar to the proof of proposition 1.3 of [2]. \square

Lemma 5. Let K be a hypergroup and let ω be a weight function on K. Each of the spaces $UC_{\omega}(K)$, $RUC_{\omega}(K)$ and $LUC_{\omega}(K)$ is a norm closed, conjugate closed and translation invariant subspace of $L_{\omega}^{\infty}(K)$ containing the constant functions and ω .

Proof. If $g \in RUC_{\omega}(K)$, write g = f.p where $f \in L^{\infty}_{\omega}(K)$, $p \in L^{1}_{\omega}(K)$. Then, for $x \in K$ $_{x}g = _{x}(f.p) = f.\Delta(x^{-})p_{x^{-}} \in RUC_{\omega}(K)$. So $RUC_{\omega}(K)$ is left translation invariant, and it is easily seen to be right translation invariant.

By lemma 3(g), $1 \in RUC_{\omega}(K)$. The other statements are similar. \square

Theorem 6. The following statements are equivalent.

- (i) (K, ω) is topologically left amenable
- (ii) (K, ω) is left amenable
- (iii) There is a left invariant mean on $UC_{\alpha}(K)$.

Proof. (iii) \rightarrow (i). Let μ_o be a left invariant mean on $X = UC_\omega(K)$ and $p \in P_\omega(K)$ with compact support. Since the mapping $x \to {}_{x} f(f \in X)$ from K to $(X, \|.\|_{\omega})$ is continuous and the point evaluation functionals in X^* separate the points of X, we have

$$f.p = \int x f p(x) dx.$$

Thus

$$\mu_o(f.p) = \mu_o(f)$$

It is proved similar to non-weighted case that for all $f \in LUC_{\alpha}(K)$ and $p_{1}, p_{2} \in P_{\alpha}(K)$ with compact support

$$\mu_o(f.p_1) = \mu_o(f.p_2)$$

Let V be a compact neighbourhood of e and set $p = \frac{\mathcal{X}^{V}}{\lambda(V)}$.

Then $\mu(f) = \mu_0(p.f.p)$ defines a TLIM on $L_{\omega}(K)$. \square

A subgroup H of K is called normal if xH = Hx, for all $x \in K$. Let H be a normal subgroup of K and let K/H be the set of all cosets xH, $x \in K$, equipped with the quotient topology with respect to the natural map p(x) = xH. Then

K/H becomes a hypergroup under the convolution

$$\int_{K/H} fd(\delta_{cH} * \delta_{fH}) = \int_{K} fo \, pd(\delta_{c} * \delta_{f}) \, (x, y \in K \, f \in C_{c} \, (K/H)).$$

Let ω be a weight function on K. The function $\omega^{\alpha}(xH) = \inf\{\omega(t)|t \in xH\}$ is an upper semicontinuous weight function on K/H [5].

Proposition 7. If (K, ω) is left amenable, so is $(K/H, \omega^{\circ})$.

Proof. Let m be a LIM on $L^{\infty}_{\omega}(K)$ and write $< M_f > = < m_f$ o $p > (f \in L^{\infty}_{\omega}(K/H))$. Since f is Borel measurable and p is continuous, $f \circ p$ is Borel measurable and since $\omega^{\circ}(xH) \le \omega(x)$, $f \circ p \in L^{\infty}_{\omega}(K)$. We have $_{x}(f \circ p)(y) = _{xH} f \circ p(y)$, hence M is a LIM on $L^{\infty}_{\omega}(K/H)$. \square

We have shown in [4] that there is a group K with a normal subgroup H and a weight ω on K such that (K, ω) is amenable, but (H, ω) is not amenable. However, we have the following.

Proposition 8. If (H, ω) and $(K/H, \omega^{\circ})$ are left amenable, then so is (K, ω) .

Proof. Let m_l be a LIM on $L_{\omega}^{\infty}(H)$ and m_2 be a LIM on $L_{\omega}^{\infty}(K/H)$. For $f \in UC_{\omega}(K)$ write, $f_l(x) = \langle m_l, f_l \rangle / \langle x \in K \rangle$. Then f_l is continuous and constant on the cosets of H in K. For $t \in xH$

$$|f_{I}(x)| = |f_{I}(t)| \le ||m_{I}|| ||f||_{\omega} \omega(t), \text{ then } \left\| \frac{f_{I}(x)}{\omega^{\circ}(rH)} \right\|_{\infty} < \infty.$$

Hence we can write $f_i = F \circ p$, $F \in L^{\infty}_{\omega^*}(K/H)$. Put $< m, f> = < m_2, F>$, then m is a LIM on $UC_{\omega}(K)$ [6, prop 3.6]. Thus by Theorem 6, (K, ω) is left amenable. \square

Let J and L be hypergroups with left Haar measures. The $J \times L$ with convolution, $\delta_{(x,y)} * \delta_{(x_1, y_1)} = (\delta_x * \delta_{x_1}) \times (\delta_y * \delta_{y_1})$, is a hypergroup with a left Haar measure [3]. If ω_i and ω_i are weights on J and L respectively, then $\omega = \omega_i \times \omega_i$ given by $\omega(x, y) = \omega_i(x)\omega_i(x)$ for $(x, y) \in J \times L$ is a weight on $J \times L$.

Proposition 9. $(J \times L, \omega)$ is left amenable if and only if both (J, ω_1) and (L, ω_2) are left amenable.

Proof. See proof of proposition 3.8 of [6]. \square

Let H be a compact subhypergroup of K, and let λ be a Haar measure on K and σ be the normalized Haar measure on H. For $x, y \in K$, let $HxH = H^*x^*H$. The set $K/H = \{HxH \mid x \in K\}$ is the set of all double cosets of H in K. This set equipped with the quotient topology with

respect to the projection $\pi: K \to K//H$, $\pi(x) = HxH$ and convolution, $\delta_{HxH} * \delta_{HyH} = \int_H \delta_{HuH} (\delta_x * \sigma * \delta_y) dt$ is a hypergroup. For details see [3, 14.2F].

Lemma 10. Let ω be a weight function on K which is equal to 1 on H, then $\omega^{\alpha}(HxH) = \inf\{\omega(z) \mid z \in HxH\}$ is an upper semicontinuous weight function on K//H and $\omega^{\alpha}(HxH) = \omega(x)$.

Proof. Since $x \in HxH$, $\omega^{\circ}(HxH) \leq \omega(x)$. If $z \in HxH$, then HzH = HxH. Hence $x \in HzH$ and $\omega(x) \leq \omega(z)$. Therefore $\omega^{\circ}(HxH) = \omega(x)$. Let $HzH \in spt(\delta_{HxH}^*\delta_{HyH}^*) = \{HzH \mid z \in xHy\}$. Then $\omega^{\circ}(HzH) = \omega(z) \leq \omega(x)\omega(y) = \omega^{\circ}(HxH)\omega^{\circ}(HyH)$. Thus ω is a weight function on K/H. \square

Proposition 11. If (K, ω) is left amenable, so is $(K//H, \omega^{\circ})$. If $\delta_x * \sigma = \sigma * \delta_x$, for each $x \in K$ where σ is the normalized Haar measure of H, then the converse is also true.

Proof. Let m be a TLIM on $L^{\infty}_{\omega}(K)$, and $f \in L^{\infty}_{\omega}(K/H)$, write < M, f> = < m, $f \circ \pi >$ where π is the projection of K onto K/H. Let $p \in P_{\omega}(K/H)$, then an easy computation shows that,

 $(f p) \circ \pi = (f \circ \pi). (p \circ \pi).$ Since $\omega^{\alpha}(HxH) = \omega(x), \int p \circ \pi(x) dx = 1$ and $\int p \circ \pi(x) \omega(x) dx$

 $<\infty$ $p \circ \pi \in P_{\omega}(K)$. Thus M is a TLIM on $L_{\omega}^{\infty}(K//H)$. The rest of the proof is similar to the proof of proposition 3, 10 of [6]. \square

Let H be a compact hypergroup and J a discrete hypergroup with $H \cap J = \{e\}$ where e is the identity of both hypergroups. Let $K = H \setminus J$ be the joint hypergroup of H

and J [6]. Let ω_I be a weight function on J, then the function,

$$\omega(x) = \begin{cases} 1 & x \in H \\ \omega_1(x) & x \in J \end{cases}$$

is a weight function on K.

Corollary 12. (K, ω) is left amenable if and only if (J, ω_1) is left amenable.

Proof. [6, 3.12].

Acknowledgements

I would like to express my deep gratitude to Dr. A.R. Medghalchi for his guidance and encouragement.

References

- 1. Bonsall, F.F. and Duncan, J. Complete normed algebras. Springer-Verlag, New York, (1973).
- Grφnbaek, N. Amenability of weighted convolution algebras on locally compact groups. *Trans Amer. Math. Soc.*, 319, (2), 765-775, (1990).
- 3. Jewett, R.I. Spaces with an abstract convolution of measures. *Advances in Math*, 18, 1-101, (1975).
- 4. Medghachi, A.R. and Pourbarat, K. Amenable weighted groups. Preprint.
- Reiter, H. Classical harmonic analysis and locally compact groups. Oxford University Press, Oxford, (1968).
- Skantharajah, M. Amenable hypergroups. Illinois Journal of Mathematics, 36, (1), 15-46, (1992).