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ON THE POWER FUNCTION OF THE LRT
AGAINST ONE-SIDED AND TWO-SIDED
ALTERNATIVES IN BIVARIATE NORMAL
DISTRIBUTION

H. Al-Rawwash*

Department of Statistics, Yarmouk University, Irbid, Jordan

Abstract

This paper addresses the problem of testing simple hypotheses about the mean of
a bivariate normal distribution with identity covariance matrix against restricted
alternatives. The LRTs and their power functions for such types of hypotheses are
derived. Furthermore, through some elementary calculus, it is shown that the power
function of the LRT satisfies certain monotonicity and symmetry properties. We treat
two cases, the case of one-sided alternatives restricted to some closed convex cone,
and the case of two-sided alternatives restricted to a two-sided cone.

1. Introduction
Consider a bivariate normal vector (X, Y) with mean
0=(8,,0,) and identity covariance matrix. Let V, beaone-
sided convex closed cone and V, a two-sided closed cone.
These cones are subsets of R? with vertex (0,0). It is
required to test the following hypotheses:

P, H;:(8, 6)=(0,00 versus H;:(8,,8)e V\(0,0)}.
(1)

P, H;:(0,,0,)=(0,0) versus H;:(0,,6,)e V\{(0,0)}.
2)

Many authors considered testing problems against
restricted alternatives. Bartholomew [3] considered a test
forhomogeneity of means against ordered alternatives. He
devoted his work to deriving the LRT and finding its null
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distribution. Due to the problem of solving certain
recurrence relations, the distribution is not completely
determined. After this problem had been solved by Miles
(9], Bartholomew [3] extended his previous work and gave
some further properties of the null distribution. Kudo [8)
and independently Niiesch [11] considered a testing
problem for which the alternative space is the non-negative
quadrant. They derived the LRT and investigated some of
its properties.

Perlman [12] considered the testing problem that
Bartholomew [3] discussed, but under the assumption that
thecovariance matrix iscompletely unknown. Groeneboom
and Truax [6] established a monotonicity property of the
power functions of some multivariate tests. They considered
a multivariate normal X: (u, X)), for which it is assumed

that the matrix A = > is diagonal of the form AL Let

L=L,L,..., LP) be the characteristic roots of A. Define
a monotone test to be one that accepts the null hypothesis
forsmall values of afunction g (L) which is non-decreasing
in each of its arguments. They showed that the power
function of a monotone test is non-decreasing in A.

Das Gupta et al. [7] gave two sufficient conditions for
the power function of an invariant test of gencral linear
hypothesis to be monotone increasing in each of the non-
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:entrality parameters. These conditions are given in terms
f convexity and symmetry of certain sections of the
icceptance region. Anderson and Gupta [2] extended one
»f these conditions to invariant tests of the hypothesis of
ndependence between two sets of random variables.

Mudholkar [10] showed that the power functions of a
slass of invariant tests based on statistics generated by
symmetric functions of convex increasing functions of the
naximal invariant statistics are monotone increasing in
he relevant non-centrality parameters. Srivastava [13]
:stablished amonotonicity property of the power functions
>f the LRTs for testing homogeneity of the variance and
‘or testing sphericity. Carter and Srivastava [5] showed
hat the modified LRT for testing homogeneity of variances
ind the sphericity test possess monotone non-decreasing
sower functions. Srivastava et al. [13] considered testing
‘he hypothesis of equality of two covariance matrices X,
ind T, of two multivariate normal populations. They
showed that the power function of the modified LRT
increases in A, , where the A's are the latent roots of X,
£,

In this paper, we show that the power functions of the

LRTs for the testing problems P, and P, have the following:

monotonicity property: If the alternative (8,, 8,) is
represented in polar coordinates as (A, ¥), where A =02
+0,2, it is shown that for a fixed A, the power function is
increasing in ¥ for y<y, and decreasing for y> 7, where
%, is half the angle of the cone. Although Bartholomew [4]
motivated this property by some numerical examples for
certain cones, the result has not yet been established
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theoretically. He could only conjecture that this property
holds for any convex closed cone. In Section 2, we present
the LRTs for problems P, and P,. Section 3 is devoted to
proving the monotonicity property for the LRT for problem
P,. Section 4 contains the proof of the monotonicity of the
LRT for problem P,

2. Derivation of the LRT for Problems P, and P,

Let V, and V, be the closed convex cones in R? with
vertex at (0,0) which are given by (representation in polar
coordinates)

V= ((r. B): 120, 0< Bsp*) ©)
and
V2 = {(r’B): re R, OSBSB*} (4)

where * satisfies 0<B*<r.

Bartholomew's approach [3] to deriving the LRT was
to partition the space R? into four regions V,, V %, V -and
V,* which are illustrated graphically in Figure 2-1-a.

Through some algebra it can be easily shown that the
LRT for the problem P, is given by:

®= ’ ®)

¥
X
8 2N
Vi
N
& /v"

Figure 2-1-a. The four cones that form a partition of R*

(b)

Figure 2-1-b. The critical region of the LRT @,
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xl+y?  #Rxy)eV: x2+y? if (x,y)e V:uVi
) . ]
0 if (x,y) € V! X= x2 if (x,y)e V3*'uV3
X*= ®) 2
x? if(x,y)e Vi 9‘—*-"-%)— if(x,y)e Vi UVS*
1+b
(x"—: bbyz) @ y)e Vi and b = tan B*. The critical region of the LRT is depicted
+

and b= tan B*. The critical region of the LRT @, is depicted
in Figure 2-1-b.

Now we will derive the LRT for the problem P,. We
partition the space R? into six regions denoted by V,*, V., **,
V., V7, V,*and V,* which are illustrated in Figure 2-2-a.

The LRT @, has the form:

in Figure 2-2-b.

3. The Monotonicity of the Power Function of
the LRT @,

In this section, we shall explicitly obtain the power
function of the LRT ®,. In addition, we will prove that the
power function is symmetric about B*/2. Furthermore, we
show that the power function satisfies a monotonicity
property withrespectto the angle of the alternative (9,,0,).

-2
&= 1 i X<k 0] First, we obtain the power function of the test ®,. To
z ) proceed we adopt the following notation:
where! 0 i X2k . |
Q) = z(vat. ©)
where z(t) is the standard normal distribution.
) oo
3‘bx
»¥ A
vy h
* -
V,_ Ve A \
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Ve Y Por :
v, N - Ag
' .
( L4
(a) () ‘

Figure 2-2-a, The cones V., V,*, V;, V,, V *-and V,*

Figure 2-2-b. The critical region for the LRT @,



J.Sci.l.R. Iran

Let (A, 7) and (r, {) be the polar transformation of
(6,,8,) and (x, y) respectively. We divide the critical region
of @, into three parts A , A,, A, as shown in Figure 2-1-b.
We use this in the proof of the following theorem.

Theorem 3.1. The power function of the LRT ®, is given
by

NAN=CGAFN+GAN+H*A,Y) (10)
where
G (A, ) =Q ('- Acos y) Q (Asiny), (1)
A2, o
exp(—)p 7
H*(A,y)=—2—L]H(k,Acosodc (12)
x
and ’
Hak)=exp(#2) | rexp(- _;. (4P dr. 13)
k12
Proof.
The power function is given by:

N, A N=P(A)+P(A)+PA).

Through some elementary calculus, it can be easily shown
that

P(A) = G(A, B* -y),

P(A) =G@4, )

and

P(A)) = H*AY).
The following theorem presents a symmetry property of
the power functionn, (A, 7).

Theorem 3.2. For a fixed A, the power function 1, (4, )
is symmetric in yabout B*/2, i.e.,

@A, B* - )=n (4, 7) for 0< y<p*2 (14)
Proof.

Notice that G (B*-y)+G(y) is symmetric about B*/2.
Thus, it is left to show that H* is symmetric. However, in
the definition of H*, if we change the variable of integration
from  into -{,we obtain
H* (A, B*-7)=H* (@4, 7).

This completes the proof of the theorem.

Through some numerical computations, concerning
the special case f* =7/3, Bartholomew [4] noticed that for
fixed A, the power function , (A, ¥) has a bell shape in .
In the following theorem, we snow that this is true for all
values of f*<zx.

Theorem 3.3. For a fixed A, the power functionn, (4, 7)
is an increasing function of y for f*/2-x <y <p*/2 and
decreasing for B*/2<y<f*/2 +x.
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Proof.

By the symmetry of 1) about B* /2, itis enough to show
that 1) is increasing for B*/2-7 <y <p*/2.

Let B denote the acceptance region of the LRT .
Therefore

2
", =1-HZLeXP(-l(x2+y’)-A—+Axcosr+Ay
B2% 2 2

sin y) dxdy.
Take the derivative of 1, with respect to ¥ to get

aniAyY)_ [ [_1 2, o2y A2 ﬂ
—-By szﬂexp ;(x +y%) T+Axoosy+Aysm

[- Ax sin Y+ Ay cos A dxdy.

Now make the transformation of (x,y) into (x', y'), by a
rotation of the angle ¥. It can be shown that (x', y') has the
bivariate normal distribution with mean vector (A, 0) and
identity covariance matrix. Therefore

an 1 (A’ Y) - ’] M (x', y') dx'dyv’
ay ‘B
where

M, y) = ﬁ Ay'exp [y?+ (x' - A?]

and B' is the image of B in x'y'-plane. The region B' is
depicted in Figure 3-1. It can be seen from the figure that
B’ can be divided into three disjoint subregions B,, B, and
B, as illustrated in the same figure.

Because B, is a mirror image of B, and because of the
structure of M(x',y") we have

\\
8| ->
\ -
/ Ullll;_
N
\\
%
N\
\
+7 8 A
// \
/
/

Figure 3-1. The set B’ and its partition B , B, and B,
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[| M@, y)axay =] Mex.y) ax dy
B B2
also, because y' <Oon B,

” M(x', y") dx'dy' < 0.

Bs
Thus

oY
This completes the proof.

for B*/2- m<y<p*n2

4.The Monotonicity of the Power Function of
the LRT @,
Following the style of Section 3, we will obtain the
power function of LRT &, and then we will show that it
has monotonicity and symmetry properties.

Theorem 4.1. The power function of the LRT ¢ can be
expressed as n2 (A, ¥) =P, (A, 7)+B, (A, 7)-B, (A, 1)
where

La2(®

J’
B,(A 1)=¢ ’ (H(k Acos®+H, -Asn§dE |,
T

2
2n
l§32(A,}')=G(A,7’)+G(A,ﬂ"‘-7’)+G(A,-'7’}*G(fiﬁ,
7 A *)»
v }mm’)’
Ban=| |
13

(z(x - Acos ¥) z (y- Asin ¥)

+2(x+A cosy)z(y+Asin y) dydx,
H (, t) is given in (11), and G (4, y) is given in (13).

Proof.

The proof of the theorem is based on dividing the
critical region into subregions A, A,, A;, A, A;and A,
illustrated in Figure 2-2-b.

Hence,

B, (& 7)= 3 Pr(A)-Pr(A,nA)-Pr(ANA).

Using a similar argument as in the proof of Theorem 3-1,
it can be shown that

B*

a2
P(A) —°2’n , (H(k Acost)d&

v
and
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gy
L1a2
- e2
PA)= TS ] (H(k, -Aoos§)d§.
v
Also
P(A)=G (),
P (As) =G ('7)’
PA)=G(y -B*),
and
P(A)=G (B*-7).
Furthermore,
{-(x#"k(l + 12)
P&, NA) L ] z(x-01) z (y- 8) dydx
and

P(A,nAY= | ¥ D . 0)2(y-0) dydx.
13
This completes the proof.
The following theorem establishes the symmetry of the
power function.

Theorem 4.2. For a fixed A>0, the power function 1,(4,7)
is symmetric about y = B*/2,i.e.,n, (A,y)=n, (4, B* -7),
Vy < B*2.

Proof.

Using a similar argument as in Theorem 3-2, we can
show that B, (A, ¥) and B, (A, 7) are symmetric about y =
B*/2. We want to show that B, (4, 7) is symmetric about
¥ = P*/2. To accomplish this, transform (x, y) into (x', y')
by arotation through an angle f*/2 clockwise. Itis easy to
see that (x', y') is distributed as N ((6',, 8',), I) where, 8', =
Acos y'and ', = Asin y',and y'= y- f* 2.

Notice that the regions (A, N A,)) and (A;NA)) inthe
xy-plane are transformed into M, and M, in the x'y'-plane.
Now let
B,(Ar) =B, (A 7)+B, (A7)
where

B8 )= ] J z(x'- Acosy’) z (y' - Asiny’) dy'dx’

M,
and

B, )= f j z (x'- Acosy") z (y' - Asiny") dy'dx’.
M2

But, if we transform y' into -y’ we get

B31 (A"Y') = B32 (A, ‘Y')

therefore, P, (A, y') is symmetric about ¥'= 0. By the

(2.3.2)
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definition of ¥ ' we can conclude that (A, y) is symmetric
about f*/2.
This completes the proof.

The following theorem establishes the monotonicity of
the power function.

Theorem 4.3. The power function of the LRT @, increases
in ¥ for all B*/2-r <y<B*/2 and decreases for all f*/2<y
<P*/2+x.

Proof. .

Let A* be the acceptance region of the LRT ®,, then
n, (4, y)=1-Pr (A*).
From this it can be seen that

an 2(A,'y)__” (-xAsin y+y Acosy)

1 (52
expl-—(x*+
5y ), y ] p( 5 ¥

2
-5\2—+xAcosy+yAsin ¥ )dxdy.

Transform (x,y) by a rotation of angle y<B/2 into (x', y).
Then (X', Y') is distributed as N ((A, 0), I). Assume that
A** is the image of the A* in the new x'y"-plane. Hence

] N2 (Aa 7)_ _ [ I M (x',y‘) dx'dyo
Y A
where,

' __:é_zj 1 x o AV ey
My) Znem( > (x'-A) +y2)).

Now, A** can be partitioned into four disjoint regions
B,, B,, B, and B, which are illustrated in Figure 4-1.

Figure 4-1. lustration of the four regions B, B,, B, and B,
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By symmetry and structure of M (x', ¥,
[ [ M (x', y) dx'dy' = - ” M (x'y)dx'dy'.

B Bz

This implies that

811 2(4, Y) - ” M(x',y')dx'dy"
ay

B3UB4

Notice that by transforming (x',y') into (-x',-y"), we get that
[ [ Mecy) dxdy = ” M(-x'-y") dx'dy’.

B3 B4

Therefore,

[[ Meyxay=-[| My)-Mex.y) axdy.
B3uBg Bs

However, if (x',y") € B, then x'€0,y">0 and A>0, so this
implies that

exp [- -;-(x' - A)2] <exp [- ;_(x'-l— A)2}
Hence,
M(xy) - M(=x',-y") <0 for all (x',y") € B,.

This means that

” M(x",y")dx'dy" <0.
B3sUBy4
Therefore,

9 n2 (A’ 7) >0

L% ’
$0 7], (A,y) is increasing for y<f*/2. This completes the
proof.
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