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Abstract
In this paper, we show that the Chapman-Kolmogorov formula could be used as
arecursive formula for computing the m-step-ahead conditional density of a Markov
bilinear model. The stationary marginal probability density function of the model
may be approximated by the m-step-ahead conditional density for sufficiently large

m.

Introduction

Bilinear stochastic processes in discrete time series
:re introduced by Granger and Andersen [1]. Aspects of
obabilistic structure of bilinear models such as
itionarity, ergodicity, etc. have been considered by
fferent authors [2, 3, 4, 6, 7, 8, 11]. However, the
iestion of distribution of a stationary bilinear process has
st been discussed much in the literature. This is perhaps
ie to the analytic intractability of the problem. For
:ample, Wang Shou-Ren et al. [15] have shown that the
ationary marginal probability density function of Markov
linear model

X,=aX,  +bX ete 0.

here ¢, ~N (0,1) and a* + b1, is the solution of the
itegral equation

=1 mfb(S) Ll(x-as)?
5 ﬁ‘EL|1+b,|e"p[ 2(Tbs”ds @

{eywords: Bilinear models; Chapman-Kolmogorov formula;
‘onditional density; Gauss-type formula; Integral equation;
farkovian representation; Matrix squaring; Numerical integration

forx#- Ia)_ andf, (x) = co forx =- L;-, which does not seem to

admit any analytic solution.

On the other hand, Moeanaddin and Tong [14] have
succeeded in using the Chapman-Kolmogorov formula to
obtain a sequence of conditional (probability) densities
and the stationary marginal probability density function of
the class of non-linear autoregressive models. In this
paper, we shall show that a similar method may be used for
computing asequenceof conditional densities of a Markov
bilinear model. Then we may approximate the stationary
marginal probability density function (if it exists) of the
process by the m-step-ahead conditional density for
sufficiently large m.

In the absence of any theoretical progress, it seems that
anumerical approach is the only way out for the evaluation
of stationary marginal probability densities of bilinear
models. On the other hand, for complex bilinear models
such as those with high orders, the computational burden
due to the curse of dimensionality will lessen the
attractiveness of the method. For such cases, the simulation
approach might be a more practical solution, in which a
long realization of the time series is generated by inputting
pseudo-random numbers to the bilinear system. It is well
known that extreme care is needed to ensure the
‘randomness’ of these numbers [10]. It is also difficult to
assess the accuracy of the results thus obtained.
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We note that besides being of interest in its own right,
the stationary distribution is needed if we want to evaluate
the expected Fisher Information of the parameter estimates
of abilinear model. Moreover, the sequence of conditional
densities are of practical importance in their own right.
This is another important advantage of our method.

Markov Bilinear Models
A general bilinear process {X,; = 0, £1,...} can be
defined by
14 q Q p
X =a, +ZaX +2 be, +Z ZbueMX,,, b=1

3)
where {e,} is a sequence of independent and identically
distributed random variables with zero mean and constant
variance.

Let us start with the simple Markov bilinear model (1).
For this model, a sufficient condition for stationarity is that

Effa+b,]} <1

or alternatively @®+b*0°<1 [12].
Using the Chapman-Kolmogorov relation, it can be
shown that

hxJx) = b xh oxx @)

whexe h(x Ix) denotes the conditional density of X, given
=x,. In particular for e~N(0, 6°), the one-stqy—ahead

f+f "

202 1+bxo

conditional density of X,,, givenX =x,,i.e. h(x,midx,) -

h(x,, x,) is known precisely, namely

h(xlx’_. 1 p[_ 1 (Xl ax02] (5)
o ol +bx |27

In evaluating the improper integral of the form (4), we
are faced with the difficulty of integrating over R. Since it
is not easy to find an analytic solution for h(x_lx), we
therefore have to use a suitable numerical method for
computing this integral efficiently. Note that h (x,lx,) and
h (x,lx,) are density functions and  (x,lx) tend to zero as
bx,| tends to infinity. We adopt the followmg procedure: it
is well known that if f is integrable over an interval, then
there exist some points x,, x,, ..., x, with corresponding
weights @,, @,, ..., @, such that j fOd=3",_ o,f(x)
In the Gauss-Hermite formula, this integral is exact for
functions fbeing the product of a polynomial of degree 2n
-1 or less and the Gaussian density. Needless to say, when

- numerical integration is employed, care must be taken to

“handle the accumulation of rounding errors.
Inpractice we can employ the Gauss-Hermite or Gauss-
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Legendre formula to generate an appropriate set of point:
& -, & with comresponding weights @, ..., @, [9]. By
using the recursive formula (4) with (5), a sequence of
conditionaldensities h (x, lr,),m=2,3,. ..canbecalculated
(Recall that 4 (xlx,) is known precxsely once the noise
density is known) As m increases, the conditional density
h (x lx) converges to f, the unique stationary marginal
probability density function of X, which is assumed to
exist. Convergence is deemed to havebeen achieved when
max ,, If,,(€)- £, (§) I< efor a small positive value of €,
e.g. €=10°. Heref, (x) = h(x_ = x lx,).

In our study, NAG routine DO1BBF is employed to
generate a set of points &, ..., & with corresponding
weights @, ..., @,, Werenormalize the conditional density
to unity at each step, so as to avoid accumulating errors.
Before re-normalization we also check the integral of
conditional density as aprecaution, If the evaluated integral
is not close to one (i.e. with error 210%), then we would
change the parameters of the NAG routine or increase the
number of points to generate another set of points and so
on until a more adequate set is found. By starting with an
arbitrary N and then by increasing the number of points, N,
and integrating over a wider range and seeing a systematic
convergence on the 7-th moments (r = 1,2,3,4), we may
assess the accuracy of the results,

Asacheck, the method has been applied to the Markov
bilinear model (1) with e, ~N(0,1), for different values of
aand b. Since the theoretical rth, (r = 1,2,3,4) moments for
the models are available in this case, in Table 2.1 we
compare the conditional density approach with e <10 and
N = 64 (column marked numerical) with the theoretical
(column marked theoretical).

Specifically, Tong [12] has shown that for model (1)
with e~N(0,1) the moments are given by

=EX) =0
H,=EX?}) = (1-a%-b)?
ty= E(X ) = 6abu,/(1-a(a*+3b%)}

= EX?) = (126(@+6)p, + 6 (@+36+3}/(1-a"
6a?b? - 3b%)

The results can be summarized as follows:

~ Table 2.1
a=b=0.1 a=b=0.3 a=-0.5, b=0.5
Theore- | Numer- | Theore- | Numer- | Theore- | Numer-
W, | tical ical tical ical tical ical
p, | 0.0000. { 0.0000 |0.0000 | 0.0000 0.0000| 0.0000
W, | 10204 {1.0204 112195 | 1.2195 2.0000] 2.0003
u, [ 0.0615 |0.0615 |0.7383 | 0.7383 -2.00001 +2.0002
i, | 3.2495 |3.2496 [6.6513 | 6.6512 | 24.0000] 23.8919
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The stationary marginal probability density function of
model (1) with @ = -0.5, b = 0.2 and N = 64, which is
approximated by the conditional density approach, is
shown in Figure 2.1,

Figure 2.1. The stationary marginal probability density function
of the model
X=-05X  +(140.2X )e, e ~N (0,1).

Superdiagonal Models

Consider the following simple superdiagonal bilinear
model

X=0X +pBX_ e +e, ©)
where ¢’s are independent and identically distributed
random variables with zero mean and constant variance,
The condition a2+ f20<1 ensures the stationarity of the
model (6).

To the best of our knowledge, no theoretical result is
available for the conditional distribution of X, given X,
and the stationary distribution of model (6) It is well
known that the Markovian representation of model (6)
takes the following form [13].

§:= Agr-xe: +Cet
X=HE, +e

Y]

where
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5 g;) (aX ,+))§3(;.1 e:)

andH—-(O,l)‘

Using Chapman-Kolmogorov relation, we have

REIE) =] Lk G 6 E1E)dE, ®)
where h(£ 1 &) denotes the conditional density of the
vector process § at time #+s given its value at time t+r, and
d§=d& g @.Ttis notdifficult to show that for e ~N (0, 0%)

o E©- a¢5 §,
a8

+Bg’

hENEy= L )

where ¢ () is the density function of e, In our numerical
integration method, the integral equation (8) is
approximated by the following summation

WE 1 E)=h (§,(,1), 5,,?)‘ é)(l) ga))g
ziz h( f,(,n’ 55) I é(l}’ im)h ( 6;;(1), 6_(2) | g(x) éoa 0,

here&m /,‘(2 0} wamthepomtsandthexrcmmpondmg

weights generawd by the NAG routine.
Consequently, the stationary joint density function of

6€" 8 =t €D

" isapproximated by h(§_1£) for sufficiently large m. Then
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J R 70(5;1(!), 5:2)) déf) gives the stationary marginal probability
density function of X,

Figure 3.1 shows the stationary marginal probability -
density function of mode

X=03X,+04X e

=271

+e, e,~N (0,1) (10)
obtained by the above method.

Tong and Moeanaddin {14] have shown that the
conditional variance of the error of an m-step non-linear
least squares predictor is not necessarily a monotonic non-
decreasing function of m. To illustrate this point, we
consxder the model
an

X= ﬁ X, e +e,e~N (0,1).

2!-1
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Figure 3.1. The stationary marginal probability densny funawn
of the model
X=03X , +04X e

[ 38

+e, ¢~N (0,1).

To calculate the conditional variance of m-step-ahead
error -term, we only need to evaluate the conditional

varianceof X, . F:gme3.2showsthecondxmmldwsmw

of X, andx gwenX =2 for model (11) with § =04.1t
is clear that the condmonal density of (X,,1X=2) has a
smaller variance than that of X, 1X,=2).

Itsswellhmwnmatforbxhnearmodels,ﬁxeexpecmum
- of X, does not exist for all m, except when all parameters
tend to zero. Our numerical experiences show that for
model (6), the conditional densities and the stationary
marginal distribution are symmetric and nmmadal
Although the conditional density of X, , given X, of model
(6) with a=0 is normal, the conditional density converges
toadeasxtywxﬂnaﬂpmbabahtyheavmmannmmalasm
increases.

Discussion

Inprinciple, the extension ofourmet}mdtoﬁ:e general

class of bilinear models of the form (3) with [ > & is

- straightforward as it has a Markovian representation. In_
practice, to obtain the conditional densities, we havetobe

. able to calculate the one-step-ahead con&maal density.
~ For some bilinear models we may encounter d:fﬁc:ﬂm,
e.g. when g is high. Note that for the general bilinear
model, we usually need a high dimensional state space for
the Markovian representation. This leads to numerical
multiple integration with all the attendant implications.
However, in the absence of any theoretical results, our
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Figure 3.2. Conditional density function of X, , , and X,, o¢ BiVen
X =2 for the model
X = 04X ;&i . ¢,~N (0,1).

method seems to provide a practical way of genetatmg a
sequence of conditional densities and approximating the
stationary marginal density. Our method tendstoexperience
fewer practical difficulties and the accuracy may be more
controllable.

Next, the method of matrix squarmgcansomemnesbc
used to accelerate the convergence for some non-linear
models [14]. However, for the two bilinear models
considered in this paper, the method of matrix squaring
doesnotmnoutmbeadvamageous,smcemecondmma!
densities converge to the stationary margmal density in
less than 15 steps anyway, without matrix squaring.

Finally, weremarkmaxomapmach couldbe used for
calculating the stationary marginal probability density
function and the conditional densmesoframamcoefﬁcmt
autoregressive (RCA) and ARCH models. Asan example,
consider the RCA model

12)

where b, is a constant and b, () <N(0, ¥%), ¢,~N (0, %), b,
0),e hemg independent. It is clear that h(x !x6)~N(b,,xo,
X, y’ + 0'%). The stationary marginal probabﬂxty density
funcnon of model (12) with b,=0.5, y?=0.25,and 0% =
1, is shown in Figure 4.1.

X=(b, "‘;bx NX, +e,
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Yigure 4.1. The stationary marginal probability density function
f the RCA model

(=O5+bM)X, +e,

vhere b,(t) ~ N(0, 0.25) and e, ~ N(0,1) and b,(?) and e are
ndependent.
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