IRRELEVANT ATTACHED PRIME IDEALS OF A CERTAIN ARTINIAN MODULE OVER A COMMUTATIVE RING

A. J. Taherizadeh

Department of Mathematics, Arak Teacher Training University, Arak, Islamic Republic of Iran

Abstract

Let M be an Artinian module over the commutative ring A (with nonzero identity) and $\mathbf{a} \subseteq \mathbf{p} \in \operatorname{spec} A$ be such that \mathbf{a} is a finitely generated ideal of A and $\mathbf{a} M = M$. Also suppose that $H = \underset{i \in \mathcal{D}}{\oplus} H$, where $H_i = M/(0: M^{a^{-1}})$ for i<0 and $H_i = M$ for i ≥ 0 ; and $\mathcal{R} = A[\mathbf{a} T, T^{-1}]$ is the Rees ring of A with respect to a (T is an indeterminate). In [12] it is shown that H is an \mathcal{R} -module. In this paper, we give various conditions under which the prime ideal (\mathbf{p} , $\mathbf{a} T$, T^{-1}) \mathcal{R} is an attached prime ideal of (0: H \mathcal{R} T^{-1}) as an \mathcal{R} -module.

Introduction

In [5], the concept of the relevant component of an ideal I (denoted by I*) of a Notherian ring R was introduced; moreover, the arguments in [5, 8] prove that I* is an interesting and useful ideal. S. McAdam [3] discussed the conditions under which (p,IT,T^1) S is a prime divisor of ST^1 in the Rees ring S=R [IT, T^1] of R with respect to I, and for establishing this, he used the nice properties of I*. $(I \subseteq p \in spec R)$.

The present author [11], defined and developed a satisfactory concept of the relevant component of an ideal a of a commutative ring A (with nonzero identity) relative to an Artinian A-module. It is appropriate for us to begin by summarizing some of the main points.

Let A be a commutative ring (with nonzero identity), M an Artinian A-module and a an ideal of A. The relevant component of a (relative to M), denoted by a* is defined

as $a^* = ann \bigcap_{i \ge 1} a^i$ (0: Ma^{i+1}). Then, from the Artinian

property of M it follows that for some large enough k,

 $\mathbf{a}^* = \operatorname{ann}_{\mathbf{A}}(\mathbf{a}^k(0:_{\mathbf{M}}\mathbf{a}^{k+1}) = ((0:_{\mathbf{M}}\mathbf{a}^k):_{\mathbf{A}}((0:_{\mathbf{M}}\mathbf{a}^{k+1}).$ Moreover, if \mathbf{a} is such that \mathbf{a} $\mathbf{M} = \mathbf{M}$, then [11, 2.2], for large \mathbf{n} , $(0:_{\mathbf{M}}(\mathbf{a}^*)^n) = (0:_{\mathbf{M}}\mathbf{a}^n)$ and \mathbf{a}^* is the largest ideal with this property.

Again let M be an Artinian A-module and a an ideal of

A such that aM = M. In this paper, using the Artinian property of M, we explore more interesting results concerning the relevant component of a relative to M. Moreover, we establish results which are, in a sense, dual to those of [3].

Throughout the paper, A will denote a commutative ring (with nonzero identity), M will denote an Artinian A-module and a will be an ideal of A. We use \mathcal{Z} to denote the set of integers and IN to denote the set of positive integers. The integral closure of a relative to M will be denoted by $\bar{\mathbf{a}}$. (For definition of integral closure see [10]).

Some Preliminary Results

In this section, we shall prove some results which will be needed later.

Lemma 2.1. Let a be an ideal of A such that aM= M. Then:

(i)
$$(a^n)^* = \operatorname{ann}_A \bigcap_{i \ge 1} a^i (0; {}_{M}a^{i+n}).$$

(ii)
$$\mathbf{a}^* \supseteq (\mathbf{a}^2)^* \supseteq ... \supseteq (\mathbf{a}^n)^*$$
.

(iii)
$$\mathbf{a} \subseteq \mathbf{a}^* \subseteq \overline{\mathbf{a}}$$
.

(iv)
$$a(a^n)^* \subseteq (a^{n+1})^*$$
.

(v) If $\mathbf{a} \subseteq \mathbf{b}$, then, $\mathbf{b} \subseteq \mathbf{a}^*$ if and only if, there is $t \ge 1$ such that $(0: {}_{\mathbf{M}}\mathbf{b}^t) = (0: {}_{\mathbf{M}}\mathbf{a}^t)$.

Proof. (i) By definition of a* we have, for large k,

Keywords: Artinian modules; Relevant component

$$(a^{n})^{*} = \operatorname{ann}_{A} (\bigcap_{i \ge 1} a^{ni} (0; {}_{M} a^{ni+n})) = \operatorname{ann}_{A} (a^{nk} (0; {}_{M} a^{nk+n}))$$

= $\operatorname{ann} (\bigcap_{i \ge 1} a^{i} (0; {}_{M} a^{i+n}))$

(ii) By (i), we have, for $t \in IN$,

$$(\mathbf{a}^{t})^{*} = \operatorname{ann} \left(\bigcap_{i \ge 1} \mathbf{a}^{i} \left(0 : {}_{\mathsf{M}} \mathbf{a}^{i+1} \right) \right) \supseteq \operatorname{ann}_{\mathsf{A}} \left(\bigcap_{i \ge 1} \mathbf{a}^{i} \left(0 : {}_{\mathsf{M}} \mathbf{a}^{i+1} \right) \right)$$

= $(\mathbf{a}^{t+1})^{*}$.

(iii) Result follows from the definition of a* and [10, (2,4) (i)].

(iv) It follows from (i) and the minimal condition that for all large enough k

$$(a^n)^* = (0:_A a^k (0:_M a^{k+n})).$$
 Thus $a (a^n)^* = a (0:_A a^k (0:_M a^{k+n}))$
 $\subseteq (0:_A a^k (0:_M a^{k+n+1})).$
 $= (a^{n+1})^*, by (i).$

(v) Let $\mathbf{a} \subseteq \mathbf{b}$ and, for some $\mathbf{t} \ge 1$, $(0: {}_{\mathbf{M}}\mathbf{b}') = (0: {}_{\mathbf{M}}\mathbf{a}')$. Then $\mathbf{b} (0: {}_{\mathbf{M}}\mathbf{a}^{t+1}) = \mathbf{b} ((0: \mathbf{a}'): {}_{\mathbf{M}}\mathbf{a}) = \mathbf{b} ((0: {}_{\mathbf{M}}\mathbf{b}'): {}_{\mathbf{M}}\mathbf{a}) \subseteq (\mathbf{b} (0: {}_{\mathbf{M}}\mathbf{b}'): {}_{\mathbf{M}}\mathbf{a}) \subseteq (\mathbf{b} (0: {}_{\mathbf{M}}\mathbf{b}'): {}_{\mathbf{M}}\mathbf{a}) \subseteq (0: {}_{\mathbf{M}}\mathbf{b}'): {}_{\mathbf{M}}\mathbf{a}) \subseteq (0: {}_{\mathbf{M}}\mathbf{a}')$. Therefore $\mathbf{b} \subseteq ((0: {}_{\mathbf{M}}\mathbf{a}'): {}_{\mathbf{A}}(0: {}_{\mathbf{M}}\mathbf{a}^{t+1})) \subseteq \operatorname{ann}_{\mathbf{A}} (\bigcap_{i \ge 1} \mathbf{a}^i (0: {}_{\mathbf{M}}\mathbf{a}^i)) = \mathbf{a}^*$.

Conversely, let $b \subseteq a^*$. Then by [11, 2.2], for all large t,

$$(0: {}_{M}\mathbf{a}^{t}) \supseteq (0: {}_{M}\mathbf{b}^{t}) \supseteq (0: {}_{M}(\mathbf{a}^{*})^{t}) = (0: {}_{M}\mathbf{a}^{t}).$$

Thus $(0: {}_{M}b^{t}) = (0: {}_{M}a^{t})$ for large enough t.

For the next result, suppose that $\mathbf{a} = (\mathbf{a}_1 ..., \mathbf{a}_s)$ and T is an indeterminate. Further suppose that $\mathcal{R} := A[\mathbf{a}_1 T..., \mathbf{a}_s T, T^{-1}]$ ($R = A[\mathbf{a}_1 T,..., \mathbf{a}_s T]$ is the Rees ring (restricted Rees ring) of A with respect to a and graded in the usual way by \mathcal{Z} .

Lemma 2.2. (See [12, (3.10)] With the same notation as above, set $H = \bigoplus_{n=1}^{\infty} H_n$, where for $n \in \mathbb{Z}$,

$$H_n = \begin{cases} M & \text{if } n \ge 0, \\ M/(0:_M a^{-n}) & \text{if } n < 0. \end{cases}$$

Then H has a structure as an \mathscr{R} - module. Further, put $G=(0:{}_{H}\mathscr{R}T^1)$. Then $G=\bigoplus_{x\in\mathscr{Z}_n}G_n$ where, for $n\in\mathscr{Z}$,

$$G_{n} = \begin{cases} 0 & \text{if } n > 0, \\ (0:_{M} a^{-n+1})/(0:_{M} a^{-n}) & \text{if } n \leq 0 \end{cases}$$

and G is an Artinian R- module.

Proof. We turn H into an \mathcal{R} - module as follows:

$$a_i T (x + (0: Ma^{-n})) = a_i x + (0: Ma^{-n+1})$$
 and,

$$T^{-1}(x + (0: Ma^{-n})) = x + (0: Ma^{-n+1}),$$

where $x \in M$, $1 \le i \le s$ and $n \in \mathcal{Z}$ It is easy to see that H is a module over \mathcal{R} .

For the last part, we note that G is an \mathcal{R} -submodule of H. Also by [13, 2.2] G is an Artinian R-module and obviously an Artinian \mathcal{R} -module.

Before stating the next Lemma, we recall that there is a theory of secondary representation for Artinian A-modules which is in many respects dual to primary decomposition for Noetherian A-modules. Accounts of this theory are available in [2,7]; however, we shall use the terminology of [2] about this theory. This theory associates with the Artinian A-module M a finite collection of prime ideals called the attached prime ideals of M, denoted by Att_A(M) (or Att (M)). (It is convenient to take the view that the zero A-module is the sum of the empty family of its secondary submodules.)

In [9], Sharp proved that sets of sequences $\{Att(0: {}_{M}a^{n})\}$, $n \in IN$, and $\{Att(0: {}_{M}a^{n+1})/(0: {}_{M}a^{n})\}n \in IN$ are ultimately constant. We denote these eventual stable values by At^* (a, M) and Bt^* (a, M), respectively.

Lemma 2.3. Let N be an A-module and $x \in A$ be such that xN = N and $(0: {}_{N}x)$ be an Artinian A-module. Then for all $n \in IN$, $(0: {}_{N}Ax^{n})$ is an Artinian A-module, and for all n, $Att_{A}(0: {}_{N}Ax^{n}) = Att_{A}(0: {}_{N}Ax)$.

Proof. It is easy to see that the submodule $(0: {}_{N}Ax)$ is isomorphic to the quotient module $(0: {}_{N}Ax^{i})/(0: {}_{N}Ax^{i})$ for all $t \ge 1$. Next the sequence.

$$0 \to (0: {}_{N}Ax) \to (0: {}_{N}Ax^{2}) \to (0: {}_{N}Ax^{2})/(0: {}_{N}Ax) \to 0$$

is exact. Thus (0: $_{N}Ax^{2}$) is an Artinian A-module and by [2, 4.1]

Att(0:
$$_{N}Ax$$
) = Att [(0: $_{N}Ax^{2}$)/ (0: $_{N}Ax$)] \subseteq Att (0: $_{N}Ax^{2}$)
 \subseteq Att [(0: $_{N}Ax^{2}$)/ (0: $_{N}Ax$)] \cup Att (0: $_{N}Ax$)
= Att (0: $_{N}Ax$).

So Att $(0: {}_{N}Ax^{2}) = Att (0: {}_{N}Ax)$. The result follows by induction on n.

The Main Results

Throughout this section, a is an ideal of A such that aM=M. First of all we need a Lemma which is given below.

Lemma 3.1. With the same notation and assumptions as in 2.2, let $p \supseteq a$ with $p \in \text{spec A}$. Let $q := p + aT + a^2T^2 + ...$

and P: $AT^1 + p + aT + a^2T^2 + ...$ Then $q \in Att_R(G)$ if and only if $P \in Att_R(G)$.

Proof. Let $q \in Att_{\mathscr{R}}(G)$. Then there is an R-quotient of G, say N, such that $q = \sqrt{\operatorname{ann}_R N}$. Since G is an \mathscr{R} -module in an obvious way, N is an \mathscr{R} -quotient of G as well and this structure is such that $T^{-1}N=0$, i. e. $T^{-1}\in \operatorname{ann}_{\mathscr{R}}N$. Now it is easy to see that $\sqrt{\operatorname{ann}_{\mathscr{R}}N} \cap A = \sqrt{\operatorname{ann}_{R}N} \cap A = q \cap A = p$ and $\sqrt{\operatorname{ann}_{\mathscr{R}}N} \supseteq \sqrt{\operatorname{ann}_{R}N} = q$. Thus $\sqrt{\operatorname{ann}_{\mathscr{R}}N} = (p, aT, T^{-1}) = P$.

Conversely, let $P \in Att_{\mathcal{R}}G$. Then again there is an \mathscr{R} -quotient module of G such that $P = \sqrt{ann_{\mathcal{R}}N}$. Now the result follows from the relations

$$q = P \cap R = \sqrt{\operatorname{ann}_R N} \cap R = \sqrt{\operatorname{ann}_R N}$$

Theorem 3.2. Let the notation be the same as in 2.2 and $p \supseteq a$ with $p \in \text{spec}(A)$ be ideals of A. Then the following are equivalent:

- (i) $p \in Att_A [(0: {}_{M}a^n) / (0: {}_{M}(a^n)^*)]$ for some $n \ge 1$;
- (ii) for some $n \ge 1$, there is an ideal $\mathbf{b}_n \supseteq \mathbf{a}^n$ such that
- $p \in Att [(0: {}_{M}a^{n}) / (0: {}_{M}b_{n})] \setminus Att [(0: {}_{M}a^{n+1}) / (0: ab_{n})];$
- (iii) $P = ... + AT^{-1} + p + aT + a^2T^2...$ belongs to $Att_{\mathcal{R}}(0:_{H}RT^{-1});$
- (iv) $\mathbf{p} \in \text{Att}_{\mathbf{A}} [(0: {}_{\mathbf{M}}\mathbf{a}^{\mathbf{n}}) / \mathbf{a}^{\mathbf{k}}(0: {}_{\mathbf{M}}\mathbf{a}^{\mathbf{n}+\mathbf{k}})]$ for some $\mathbf{n} \ge 1$ and large \mathbf{k} .

Proof. By [1, Lemma 3], we can (and do) assume that a is finitely generated.

(i) \Rightarrow (ii) By [11, 2.2], for all large enough k, (0: $_{M}a^{k}$) =(0: $_{M}(a^{k})^{*}$). Thus, suppose that n is chosen so that $p \in Att[(0:a^{n})/(0:(a^{n})^{*}]$ and $p \notin Att[(0:_{M}a^{n+1})/(0:(_{M}a^{n+1})^{*})]$.

By Lemma 2.1, $(0: {}_{M}\mathbf{a}(\mathbf{a}^{n})^{*}) \supseteq (0: {}_{M}(\mathbf{a}^{n+1})^{*})$ so that the sequence

 $\begin{array}{l} 0 \rightarrow (0:_{M}a(a^{n})^{*}/(0:_{M}(a^{n+1})^{*}) \rightarrow (0:_{M}a^{n+1})/(0:_{M}(a^{n+1})^{*}) \rightarrow \\ (0:_{M}a^{n+1})/(0:_{M}a(a^{n})^{*}) \rightarrow 0 \ \ \text{is exact. Thus by } [2,4.1] \\ \text{Att}_{A} \ [(0:_{M}a^{n+1})/(0:_{M}a(a^{n})^{*})] \subseteq & \text{Att}[(0:_{M}a^{n+1})/(0:_{M}(a^{n+1})^{*}] \\ \text{and therefore} \quad p \in & \text{Att} \ (0:_{M}a^{n})/(0:_{M}(a^{n})^{*})] \setminus & \text{Att}[(0:a^{n+1})/(0:_{M}(a^{n})^{*})]. \end{array}$

(ii) \Rightarrow (iii) Let $\mathbf{p} \in \text{Att} [(0:_{M}\mathbf{a}^{n}) / (0:_{M}\mathbf{b}_{n})] \setminus \text{Att}[(0:_{M}\mathbf{a}^{n}) / (0:_{M}\mathbf{a}^{n})] \times \text{Att}[(0:_{M}\mathbf{a}^{n}) / (0:_{M}\mathbf{b}_{n})] \times \text{Att}[(0:_{M}\mathbf{a}^{n}) / (0:_{M}\mathbf{b}_{n})] \times \text{Att}[(0:_{M}\mathbf{a}^{n})] \times \text{Att}[(0:_{M}\mathbf{a}^{n})]$

where for $i \in \mathbb{Z}$,

$$H_{i} = \begin{cases} (0:_{M} \mathbf{a}^{-i+n})/(0:_{M} \mathbf{a}^{-i}) & \text{if } i < 0 \\ (0:_{M} \mathbf{a}^{n-i}) & \text{if } i \ge 0 \end{cases}$$

(with the convention that $\mathbf{a}^n = \mathbf{A}$ for $n \le 0$). We shall prove that \mathbf{q} is minimal over $\sqrt{0:_R N'}$ with $N' = \bigoplus_{\mathbf{x} \in \mathcal{Z}} N'$, where for $\mathbf{i} \in \mathcal{Z}$,

$$\mathbf{N'_i} = \begin{cases} (0;_{\mathbf{M}} \mathbf{a}^{\mathbf{n}-\mathbf{i}})/(\mathbf{N};_{\mathbf{M}} \mathbf{a}^{-\mathbf{i}}) & \text{if } \mathbf{i} \leq 0 \\ 0 & \text{if } \mathbf{i} > 0. \end{cases}$$

To see this, let $\alpha \in \operatorname{ann}_R(N') \cap A$. Then $\alpha(0: {}_{M}a^n) \subseteq N$ and so $\alpha \in (0: {}_{A}S_1) \subseteq p$. Now let $\alpha \in p$. Then $\alpha^t(0: {}_{M}a^n) \subseteq N$ for some $t \in IN$ and so $\alpha^t(0: {}_{M}a^{n-i}) \subseteq (N: {}_{M}a^{-i})$ for all $i \le 0$. Thus, $\alpha \in \operatorname{ann}_R(N)' \cap A$. Therefore $\operatorname{ann}_R(N') \cap A = p$

Now suppose that the claim is false and q' is a prime ideal of R minimal over ann_RN' such that $q' \subset q$. Then, by the above argument, we have

$$p = \operatorname{ann}_{R}(N') \cap A \subseteq q' \cap A \subseteq q \cap A = p$$

so $q' \cap A = p$. Now since $p \subseteq q$, we must have a $T \not\subset q$. Let $\alpha \in a$ be such that $\alpha T \notin q$. Then

$$((0:N'): {}_{A}\alpha TR) \subseteq (\mathbf{q}: {}_{A}\alpha TR) = \mathbf{q} \text{ and}$$

$$((N: {}_{M}\alpha): {}_{A}(0: {}_{M}a^{n+1})) = ((0:N'): {}_{A}\alpha TR) \cap A \subseteq \mathbf{q} \cap A = \mathbf{p}.$$

Also $(0: {}_{A}S_{1}) \subseteq ((N: {}_{M}a): {}_{A}(0: {}_{M}a^{n+1})) \subseteq ((N: \alpha): {}_{A}(0: {}_{M}a^{n+1})).$ Thus

$$p = \sqrt{0_A : S_1} \subseteq \sqrt{((N:_M \mathbf{a}):_A (0:_M \mathbf{a}^{n+1}))} \subseteq \mathbf{p} \text{ and } \mathbf{p}$$

$$= \sqrt{(N:_M \mathbf{a}):_A (0:_M \mathbf{a}^{n+1})}.$$

We deduce that $p \in Att [(0: {}_{M}a^{n+1})/(0: {}_{M}ab_{n})]$, a contradiction.

(iii) \Rightarrow (iv) Let $P \in Att_{\mathfrak{R}}(G)$. Then, by Lemma 3.1, $q \in Att_{\mathbb{R}}(G)$. Suppose that $q = \sqrt{0:\mathbb{R}N}$, where N is a quotient of G, say,

$$N = ... + (0_{M} : a^{k}) / N_{k} + (0_{M} a^{k-1}) / N_{k-1} + ... + (0 :_{M} a) / N_{k} + 0 + 0 + ...$$

Thus, for $i \ge 1$, $N_i \subseteq (0:_M a^i)$ and $aN_{i+1} \subseteq N_i$. Since $0 \ne N$ there is $k \ge 1$ such that $N_k \ne (0:_M a^k)$. Let n be the least integer i such that $N_i \ne (0:_M a^i)$. Consider the R-module

$$N' = ... + (0:_{M} a^{k}) / (N_{n} : a^{k-n}) + ... + (0:_{M} a^{n+1}) / (N_{n} : a) + (0:_{M} a^{n}) / N_{n} + 0 + 0 + ... ,$$

which is isomorphic to a quotient of N. So N' is q-secondary R-module and $\mathbf{q} = \sqrt{0_R : N'}$. But it is easy to see that $\sqrt{0_R : N'} \cap A \subseteq \sqrt{N_n :_A (0_M : \mathbf{a}^n)}$ and from the relation $\mathbf{a}^k (0_M : \mathbf{a}^{k+n}) \subseteq (0_M : \mathbf{a}^n)$ the reverse inclusion will follow, Thus

$$\sqrt{N_n:(0_M;a^n)}=\sqrt{0_R:N'\cap A}=q\cap A=p.$$

Next a is finitely generated and hence for all large $k(k \in IN) a^k T^k N' = 0$, i. e. $a^k (0:_M a^{n+k}) \subseteq N_a$. Therefore $p \in Att [(0:_M a^n)/a^k (0:_M a^{n+k})]$.

(iv) \Rightarrow (i) Let (0: $_{M}a^{n}$)/N be a p-secondary quotient of (0: $_{M}a^{n}$)/ a^{k} (0: $_{M}a^{k+n}$) (k is large enough), where a^{k} (0: $_{M}a^{n+k}$) $\subseteq N \subseteq (0:_{M}a^{n})$. By Lemma (2.1) (i), $(a^{n})^{*} = (0:_{A}a^{k}(0:_{M}a^{n+k}))$ $\supseteq (0:_{A}N)$ for large k. So $(0:_{M}(a^{n})^{*}) \subseteq (0:_{M}(0:_{A}N)) := N_{1}$. Now (0: $_{M}a^{n}$)/ N_{1} is isomorphic to a quotient of $(0:_{M}a^{n})$ /N and hence p-secondary. On the other hand, $(0:_{M}a^{n})$ / N_{1} is isomorphic to a quotient of $(0:_{M}a^{n})$ / (0: $_{M}(a^{n})^{*}$) and so $p \in Att [(0:_{M}a^{n})/(0:_{M}(a^{n})^{*})]$.

Corollary 3.3. Let P, p and G be the same as in 3.1. Then P will be an attached prime ideal of G (as an \mathcal{R} -module) in each of the following cases:

- (1) $p \in Att (0:_{M} a^{n}) \setminus Att (0:_{M} (a^{n})^{*})$ for some $n \ge 1$;
- (2) $p \in Att(0:_{M} a^{n}) \setminus Att(0:_{M} a^{n+1})$ for some $n \ge 1$;
- (3) $p \in Att [(0:_{M} a^{n})/(0:_{M} a^{n-1})] \setminus Att [(0:_{M} a^{n+1})/(0:_{M} a^{n})]$ for some $n \ge 1$;
- (4) $p \in Att[(0:_{M} a^{n})/(0:_{M} \overline{a^{n}})] \setminus Att[(0:_{M} a^{n+1})/(0:_{M} \overline{a^{n+1}})]$ for some $n \ge 1$.

Proof. From the exact sequence

$$0 \rightarrow (0:_{M} (\mathbf{a}^{n})^{*}) \rightarrow (0:_{M} \mathbf{a}^{n}) \rightarrow (0:_{M} \mathbf{a}^{n})/(0:_{M} (\mathbf{a}^{n})^{*}) \rightarrow 0$$

and [2, 4.1] we get

Att
$$(0:_{M} a^{n}) \subseteq Att (0:_{M} (a^{n})^{*}) \cup Att [(0:_{M} a^{n})/(0:_{M} (a^{n})^{*})].$$

So if **p** is as in (1), then $p \in Att [(0:_M a^n)/(0:_M (a^n)^*]$ for some $n \ge 1$; and hence the result follows from Theorem (3.2)(i) \Rightarrow (iii).

(2), (3). For (2), let $\mathbf{b}_n = \mathbf{A}$ and for (3) let $\mathbf{b}_n = \mathbf{a}^{n-1}$. Then $\mathbf{p} \in \mathrm{Att} \ [(0:_{\mathsf{M}} \mathbf{a}^n)/(0:_{\mathsf{M}} \mathbf{b}_n)] \setminus \mathrm{Att} \ [(0:_{\mathsf{M}} \mathbf{a}^{n+1})/(0:_{\mathsf{M}} \mathbf{ab}_n)]$. Since $\mathrm{Att} \ [(0:_{\mathsf{M}} \mathbf{a}^{n+1})/(0:_{\mathsf{M}} \mathbf{b}_n)] \subset \mathrm{Att} \ [(0:_{\mathsf{M}} \mathbf{a}^{n+1})/(0:_{\mathsf{M}} \mathbf{b}_n)]$, the result follows from Theorem 3.2 (ii) \Rightarrow (iii).

(4). Let $\mathbf{b}_n = \overline{\mathbf{a}^n}$. Then $\mathbf{p} \in \text{Att}[(0:_{\mathbf{M}} \mathbf{a}^n)/(0:_{\mathbf{M}} \mathbf{b}_n)]$ and

p∉ Att [(0:_M aⁿ⁺¹)/(0:_M b_{n+1})]. But by [10, 1.3 (ii)] aⁿ⁺¹ is a reduction of a \overline{a}^n (relative to M) and hence by [10, 2.4 (i)] a $\overline{a}^n \subseteq \overline{a}^{n+1}$. Thus ab_n \subseteq b_{n+1}, and so p ∈ Att [(0:_M aⁿ)/(0:_M b_n)]. To complete the proof we use Theorem (3.2) (ii) ⇒(iii) once more.

For the last Theorem, we need a Lemma, which is given below. This Lemma is essentially Theorem 2.9 of [13] and so we omit the proof.

Lemma 3.4. Let the notation be as in Lemma 2.2 and further suppose that **b** denotes the ideal $\sum_{i=1}^{s} \mathcal{R}(a_i T)$ of \mathcal{R} . Then $p \in Bt^*$ (a,M) if and only if there exists $q \in Att_{\mathcal{R}}(G)$ such that $b \not\subseteq q$ and $q \cap A = p$.

Theorem 3.5. Let the notation be the same as in Lemma 2.2. Let $n \in IN$ be such that $p \in Att(0:_M a^n) \setminus At^*(a,M)$. Then P is the only attached prime ideal of G (as an \mathcal{R} -module) which intersect A at p.

Proof. We may assume (and do so) that $p \in Att(0:_M a^n) \setminus Att(0:_M a^{n+1})$. Then, by Corollary 3.3 (2), $P \in Att_{\mathcal{R}}(G)$. But $p \in Bt^*$ (a,M) and hence, by Lemma 3.4, P is the only attached prime ideal of G which intersects A at p.

Examples

In this section, we give two examples concerning the ideas we have encountered. The first example is, in fact, an adaptation of Example A of [3] to the Artinian situation.

Example 4.1. Let F be a field and x be an indeterminate. Let $M = F[x^{-1}]$ be the inverse polynomial module. By $[1, \S 2]$, M is an Artinian F[x]- module. Let $A = \{\alpha_0 + x^3g(x) | g(x) F[x]\}$, $p = xF[x] \cap A$ and $a = (x^3, x^4) A$. Then $a \neq a^* = \overline{a} = p$. Also, for $n \geq 2$, $a^n = (a^n)^* = \overline{a^n} = p^n$. Finally, with the same notation as Lemma 2.2 $(p, aT, T^1)\mathcal{R}$ is not an attached prime ideal of G and hence

Att
$$(0:_{M} \mathbf{a}) \subseteq \text{Att } (0:_{M} \mathbf{a}^{2}) \subseteq \dots$$
.

Proof. First we show that M is an Artinian A-module. We note that

$$M = \bigcup_{i=1}^{\infty} (0;_{_{M}} (xF[x])^{i}) \subseteq \bigcup_{i=1}^{\infty} (0;_{_{M}} (xF[x] \cap A)^{i}) = \bigcup_{i=1}^{\infty} (0;_{_{M}} p^{i}).$$

Thus, $M = \bigcup_{i=1} (0: {}_{M}p^{i})$. By [4, 1.3], it is enough to show that $(0: {}_{M}p)$ is an Artinian A-module. Now, since A is a Northerian

ring and $(0:_{\mathbf{M}}\mathbf{p}) = (0:_{\mathbf{M}}\mathbf{x}^3) = \{\alpha_0 + \alpha_1\mathbf{x}^{-1} + \alpha_2\mathbf{x}^{-2}|\alpha_1 \in F\},$ $(0:_{\mathbf{M}}\mathbf{p})$ is a Noetherian A-module. On the other hand, $(0:_{\mathbf{M}}\mathbf{p})$ is annihilated by p, which is a maximal ideal of A, (xF[x]) is a maximal ideal of F[x], and F[x] is the integral closure of A) we deduce that $(0:_{\mathbf{M}}\mathbf{p})$ is an Artinian A-module.

It is easy to see that $\mathbf{p} = (\mathbf{x}^3, \mathbf{x}^4, \mathbf{x}^5) \mathbf{A}$ and $\mathbf{p}^2 = (\mathbf{x}^6, \mathbf{x}^7, \mathbf{x}^8) \mathbf{A} = \mathbf{a}^2$. Thus $(0:_{\mathsf{M}}\mathbf{p}^2) = (0:_{\mathsf{M}}\mathbf{a}^2)$ and, by Lemma 2.1 (iii) and (v), $\mathbf{p} \subseteq \mathbf{a}^* \subseteq \overline{\mathbf{a}}$. But $\overline{\mathbf{a}} \neq \mathbf{A}$ and \mathbf{p} is maximal and so we have $\mathbf{p} = \mathbf{a}^* = \overline{\mathbf{a}}$. Since $\mathbf{x}^5 \in \mathbf{a}^*$ and $\mathbf{x}^5 \notin \mathbf{a}$, we get $\mathbf{a} \neq \mathbf{a}^*$.

Now for $n \ge 2$, we have $\mathbf{a}^n = (\mathbf{x}^{3n}, \mathbf{x}^{3n+1}, \mathbf{x}^{3n+2})$ $A = \mathbf{p}^n = \mathbf{x}^{3n}$ $\mathbf{F}[\mathbf{x}] \cap \mathbf{A} \subseteq \mathbf{x}^{3n}$ \mathbf{A} . Also \mathbf{x}^{3n} $\mathbf{A} \subseteq \mathbf{a}^n \subseteq \mathbf{x}^{3n}$ \mathbf{A} . Therefore $\overline{\mathbf{a}^n} = \mathbf{x}^{3n}$ $\mathbf{A} = \mathbf{p}^n$. Thus, by Lemma 2.1 $\mathbf{p}^n = \mathbf{a}^n \subseteq (\mathbf{a}^n)^* \subseteq \overline{\mathbf{a}^n} = \mathbf{p}^n$ and the result follows.

Finally, since $(0:_{M}\mathbf{p}) = (0:_{M}\mathbf{a}^{*}) = (0:_{M}\mathbf{a})$ and $\mathbf{a}^{n} = (\mathbf{a}^{n})^{*}$ for $n \ge 2$, we get $(0:_{M}(\mathbf{a}^{n})^{*}) = (0:_{M}\mathbf{a}^{n})$ for all $n \ge 1$. Hence, by Theorem 3.2, $(\mathbf{T}^{-1}, \mathbf{p}, \mathbf{a}\mathbf{T}) \ne \mathbf{Att}_{\mathscr{R}}(\mathbf{G})$. Thus, by corollary 3.3,

Att
$$(0:_{M}a)\subseteq Att (0:_{M}a^{2})\subseteq ...$$

Example 4.2. (See [6, §5]). Let $p_1, p_2, ..., p_k$ be distinct prime integers, and let $n_1, n_2, ..., n_k$ be positive integers. We shall let M denote the additive group modulo $p_1^{n_1}p_2^{n_2}...p_k^{n_k}$. We can regard M as a \mathbb{Z} -module in the usual way. Every submodule of M may be single generated, and we use < m > to denote the submodule of M which is generated by the integer m of M.

By [6, §5] the secondary submodules of M are those generated by element $p_1^{\mu 1}p_2^{\mu 2}...p_k^{\mu k}$, where all but one of the μ 's are equal to the corresponding n, and the single exception satisfies $0 \le \mu_1 < n_1$. Since M is finite, M is an Artinian $\not \succeq$ module and so each submodule of M has a secondary decomposition in M. The submodule of M generated by $p_1^{m_1}...p_k^{m_k}, 0 < m < n, 1 \le i \le k$, has a secondary decomposition.

$$< p_1^{m_1} p_2^{m_2} ... p_k^{m_k} > = \sum_{i=1}^k < p_1^{n_1} ... p_{i-1}^{n_{i-1}} p_i^{n_i} p_{i+1}^{n_{i+1}} ... p_k^{n_k} >$$

and so $\text{Att}_{\mathcal{Z}}(<\mathbf{p_1}^{m_1}\,\mathbf{p_2}^{m_2}...\mathbf{p^{mk}}>) = \{\mathbf{p_i}\,\mathcal{Z}\,|\,\mathbf{m_i}\neq\mathbf{n_i}\}$. Also let $\mathbf{a} = <\mathbf{p_1}\,\mathbf{p_2}...\mathbf{p_k}>$. Then $\mathbf{a} = \mathbf{a^*} = \overline{\mathbf{a}}$ and $\text{Att}\ (0:_{_{\mathbf{M}}}\mathbf{a}) = \text{Att}(0:_{_{\mathbf{M}}}\mathbf{a^2}) =$

Proof. The first part is easy. For the second part we note that if $\langle b \rangle$ is a reduction of a relative to M, then it is readily seen that $\langle b \rangle = a$. Thus, by [10, 2.5], $\overline{a} = a$ and so $a = a^* = \overline{a}$ by Lemma (2.1) (iii).

Finally, it is easy to see that $(0:_{\mathbf{M}}\mathbf{a}^i) = \langle p_1^{n_1-i}...p_k^{n_k-i} \rangle$, (with the convention that $p_t^{n_t-i} = 1$ whenever n_t -i<0.). Thus by the first part Att $(0:_{\mathbf{M}}\mathbf{a}^i) = \{p_1 \mathbb{Z}, p_2 \mathbb{Z}, ...p_k \mathbb{Z}\}$ for all $i \ge 1$.

Acknowledgements

The author would like to the thank the Arak Teacher Training University for its financial support.

References

- 1. Kirby, D. Artinian modules and Hilbert polynomials. Quart J. Math. Oxford Ser., (2), 24, 47-57, (1973).
- Macdonald, I.G. Secondary representation of modules over a commutative ring. Symposia Mathematica, 11, (Istituto Nazionale di alta Mathematica, Roma) 23-43, (1973).
- McAdam, S. Irrelevant prime divisors. J. Pure App. Algebra, 61, 267-271, (1989).
- Melkersson, L. On asymptotic stability for sets of prime ideals connected with the powers of an ideal. *Math. Proc. Camb. Phil. Soc.*, 107, 267-271, (1990).
- Mirbagheri, A. and Ratliff, Jr, L.J. On the relevant transform and the relevant component of an ideal J. Algebra, 111, 507-519, (1987).
- Moore, D.J. Primary and coprimary decomposition. Proc. Edinburgh Math, Soc. 18, 251-264, (1973).
- Northcott, D.G. Generalized Koszul complexes and Artinian modules. Quart J. Math. Oxford, (2), 23, 289-297, (1972).
- Ratliff, Jr, L.J. and Rush, D. E. Two notes on reduction of ideals. *Indiana Univ. Math. J.*, 27, 929-934, (1978).
- Sharp, R.Y. Asymptotic behaviour of certain sets of attached prime ideals. J. London Math. Soc., (2), 34, 212-218, (1986).
- Sharp, R.Y. and Taherizadeh, A. J. Reduction and integral closures of ideals relative to an Artinian module *Jbid.*, (2), 37, 203-218, (1988).
- 11. Taherizadeh, A. J. A note on reduction of ideals relative to an Artinian module. *Glasgow Math. J.*, 35, 219-224, (1993).
- Taherizadeh, A. J. Behaviour of ideals relative to Artinian modules over commutative rings. Ph. D. Thesis. Univeristy of Sheffield, (1987).
- Taherizadeh, A. J. On asymptotic values of certain sets of attached prime ideals. Glasgow Math J., 30, 293-300, (1988).