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Abstract
Let M be an Artinian module over the commutative ring A (with nonzero identity)
anda C p € spec A be such thata is a finitely generated ideal of A and aM =M. Also
suppose that H= oH, where H= M/ (0: Ma'*) fori<0andH=M fori> 0;and 92 = A[
ey

aT,T!]istheReesring of A withrespecttoa (Tisanindeterminate). In [12]itis shown
that H is an %-module. In this paper, we give various conditions under which the
prime ideal (p, aT, T"') $is an attached prime ideal of (0: ;92 T") as an $-module.

Introduction

In [5], the concept of the relevant component of an
ideal I (denoted by I*) of aNotherian ring R was introduced;
moreover, the arguments in [5, 8] prove that I* is an
interesting and useful ideal. S. McAdam [3] discussed the
conditions under which (p,IT, T) S is a prime divisor of
ST in the Rees ring S= R [IT, T-'] of R with respect to I,
and for establishing this, he used the nice properties of I*.
(I < pe specR).

The present author [11], defined and developed a
satisfactory concept of the relevant component of an ideal
a of acommutative ring A (with nonzero identity) relative
to an Artinian A-module. It is appropriate for us to begin
by summarizing some of the main points.

Let A be a commutative ring (with nonzero identity),
M an Artinian A-module and a an ideal of A. The relevant
component of a (relative to M), denoted by a* is defined

as a* = ann Q a' (0: ,a"*"). Then, from the Artinian
1

property of M it follows that for some large enough k,
a*=ann, (a*(0:,,a*")=((0:,a"): A((0:, a*). Moreover,
if a issuchthat aM =M, then [11, 2.2}, for large
n, (0:,(a*))=(0:,a" and a* is the largest ideal with this
property.
Again let M be an Artinian A-module and a an ideal of
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A such that aM = M. In this paper, using the Artinian
property of M, we explore more interesting results
concerning the relevant component of a relative to M.
Moreover, we establish results which are, in a sense, dual
to those of [3].

Throughout the paper, A will denote a commutative
ring (with nonzero identity), M will denote an Artinian
A-module and a will be an ideal of A. We use Z to denote
the set of integers and IN to denote the set of positive
integers. The integral closure of a relative to M will be
denoted by a. (For definition of integral closure see [10]).

Some Preliminary Results
In this section, we shall prove some results which will
be needed later.

Lemma 2.1.Letabe anideal of A such thataM=M. Then:
(i) @")* =ann, ( 1;\1 a' (0: ,,a*").

(i) a* 2 @)* 2...0 @V)*.

(iii) aca*ca.

(iv) a @%)* < (@*)*.

(v) Ifa c b, then, b  a* if and only if, there is t2 1 such
that (0: ,,b") = (0: M)

Proof. (i) By definition of a* we have, for large k,
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(@")*=ann, (r\l a" (0: ,a™*")) = ann, (a™ (0: V@)
iz
=ann (N a' (0: ,a"*))
21

(ii) By (i), we have, fort « IN,
@)* =ann (0 &' (0: @) 2ann, (0 a' O @)
= (atﬂ)*-
(iii) Result follows from the definition of a* and [10,

2.4) @l
(iv) It follows from (i) and the minimal condition that for

all large enough k
(@")* =(0: ,a* (0: ,@*)). Thus a (a")* = a (0: ,a* (0: @)

< (0: a* (0: a=™h).
= (a™)*, by (i).

(v) Leta < b and, for some 1, (0:,b") =(0: va). Then
b (0: ,a*")=b ((0: a%):,,a)=b ((0: , b"): ,a)c (b (0: ,b):  a)
c(0: b*"):, 2)< (0: ;). Therefore b < ((0:,,29: ,(0:, @%)
cann, (ir;l a' (0:  aY) =a*.

Conversely, let b < a*. Then by [11, 2.2], for all large t,

©, 292 (©: b9 2 (:,@%)) = (0: 2.

Thus (0: ,,bY) = (0, &) for large enough t.

For the next result, suppose thata = (a,...,a) and T is
anindeterminate. Further suppose that #: =A[aT...,aT,
T'] R = A [aT,...,aT] is the Rees ring (restricted Rees
ring) of A with respect to a and graded in the usual way by
Z

Lemma 2.2, (See [12, (3.10)] With the same notation as
above, set H= @3H_, where for ne &
X€

a M if n20,
M/(0:,,a®) if n<0.

© Then H has a structure as an %~ module. Further, put
G=(0: ,£T"). Then G = ® G, where, forne &

X€z

G_ 0 ' if n>Os
" \(0:,,a)/(0: a0 if n<0

and G is an Artinian - module.
Proof. We turn H into an $2- module as follows:

aT(x+ (0: a")=ax+ (0:,a™)and,
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T (x+ (0: a")=x+(0: a™),

where x eM, 1 <i<sandn € & Itis easy to see that H
is a module over .

For the last part, we note that G is angZ-submodule of
H. Also by [13, 2.2] G is an Artinian R-module and
obviously an Artinian $Z-module.

Before stating the next Lemma, we recall that there is
atheory of secondary representation for Artinian A-modules
which is in many respects dual to primary decomposition
for Noetherian A-modules. Accounts of this theory are
available in [2,7]; however, we shall use the terminology
of [2] about this theory. This theory associates with the
Artinian A-module M a finite collection of prime ideals
called the attached prime ideals of M, denoted by At (M)
(or At (M)). (It is convenient to take the view that the zero
A-module is the sum of the empty family of its secondary
submodules.)

In[9], Sharp proved that sets of sequences { Att(0: wa s
ne IN, and {Att (0: ,a*')/(0: ,a")}n € IN are ultimately
constant. We denote these eventual stable values by At*
(a,M) and Bt* (a, M), respectively.

Lemma 2.3. Let N be an A-module and xe A be such that
xN =N and (0: x) be an Artinian A-module. Then for all

nelN, (0: ,Ax®) is an Artinian A-module, and for all n,
Att, (0: Ax") =Aut, (0: Ax).

Proof. It is easy to see that the submodule (0: NAX) is
isomorphic to the quotient module (0: ~AX9/(0: [Ax*") for
all 1. Next the sequence.

0 — (0: JAx)— (0: (Ax)— (0: (Ax?/ (0: (Ax)—> 0

isexact. Thus (0: ;Ax?) is an Artinian A-module and by [2,
4.1}

Att(0: (Ax) = Att [(0: ( Ax?)/ (0: [AX)] ¢ Att (0: ,Ax?)
< At [ (0: (Ax?)/ (0: ,Ax)] LAt (0: ,Ax)
= Att (0: (Ax).

So Att (0: (Ax?) = Att (0: yAX). The result follows by
induction on n,

The Main Results
Throughout this section, a is an ideal of A such that
aM=M. First of all we need a Lemma which is given
below.

Lemma 3.1. With the same notation and assumptions as in
22,letp pawithpe spec A.Letq: =p +aT +a’T?+...
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andP: AT + p+aT+a’T?+... Thenq € Att (G)ifandonly
if Pe A, (G).

Proof. Let qe Att, (G). Then there is an R-quotient of G,

say N, such that g =VEn—R—I:f. Since G is an $Z-module in
an obvious way, N is an 9Z-quotient of G as well and this
structure is such that T'N=0, i. e, T"e ann_N. Now it is
easytoseethatVann@N NA= VannRNmA=qu=p
and VanngN = \'annRN =q. Thus Yann AN =(p,aT, T
H=P,

Conversely, let P € Att, G. Then again there is an %-

quotient module of G such that P = Yann gN. Now the
result follows from the relations

q=PNR=Yann N "R = Yann; N

- Theorem 3.2. Let the notation be the same as in 2.2 and
P a with pe spec (A) be ideals of A. Then the following
are equivalent:

@) p e At [(0: @)/ (0: (@*))] for some n 21;

(i1) for some n 21, there is an ideal b > a" such that

p eAtt [(0: )/ (0, b)Nu [(0: ,a')/(0: ab)];

i) P= ..+ AT'+p+aT+a’T’... belongs to
At (0: RT);

(iv) p e At [(0: ,a") /a(0: ,a™9)] for some n>1 and
large k.

Proof. By [1, Lemma 3], we can (and do) assume that a is
finitely generated.

(D)= (ii) By [11, 2.2], for all large enough k, (0: , ")
=(0: ,(a*)*). Thus, suppose that n is chosen so that
pe Att[(0:a") /(0:(a”)*] and pe At [(0:,,a™)/(0:(, a™")*)].

By Lemma 2.1, (0: L a(a"*)2 (0: (@ 1)%) so that the
sequence

0—(0: , a@@)*/ (0: , (@a")*) — (0: , a™)/ (0: (a™)*) -
©: ,a*) /(0: ,a(@") *) — 0 is exact. Thus by [2,4.1]
Att, [(0:, ™) (0: a@")*)] CAR[(0:,a™) / (O0:, (@")*]
and therefore pe Att (0:,a")/(0:, (@)*)N\ Au[(0:a™") /
(0:a(@")*)). So we put b_= (a")*.

(i)=>(iii) Let p eAnt [(0:,@") /(0:;,b)] \ Au[(0:, 2% /
(0:,,ab,) with b, 2a”. Suppose thatp = Y0: , S, where S, is
a quotient of (0:,a") /(0:,b ), say, S~ (0:,@")/N with
(0:,@a")2ND (0:,,ab ). We claim that, g = p + aT + a?T%+
...€Att, (0: .2 T") and the result follows from Lemmas
2.3 and 3.1. To see this, we note that (0: AT =@ H

Xez
where forie 2,
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(O:Ma‘**“) / (O:Ma‘i) if

g

(with the convention that a" = A for n <0). We shall prove
that q is minimal over Y0 ; g N'withN'= & N, where for

XeE2
ieZ

0 ™)/ (N: a7
N;=< WA B,
0

(O:M ari) if  i20

if i<0,

if  i>0.
To see this, leto e ann, (N ) A, Then o (0: wa) cNand
sooce (0:, S))cp.Now leto.ep. Then o (0:, a")c N for
some te INand so o' (0: , a™)c (N:  a”) forall i< 0. Thus,
o € ann, (N)' N A, Therefore ann, (N) NA =p

Now suppose that the claim is false and q' is a prime

ideal of R minimal over ann, N’ such that q'c q. Then, by
the above argument, we have

p=ann, (N) NAc gdnAcqnA=p

0 ¢'n A = p. Now since pc q, we must have a Tz q. Let
de a be such that oTe q. Then

(O:N): ,aTR) c (q: ,0TR) = q and
(N: 0z , (0: @)= ((O:N): ,aTR)INA cqN A =p.

Also (0:,S)) c((N: a):, (0:, @) ((N: 0):,, (0:, a™)).
Thus

Pp=1Y0:S c Y(N:y2):0: 4+1) < p and p

=Y(N:ya):,0 t g antD.

We deduce that p eAtt [(O: W™/ (0: ,ab)], a
contradiction,

(iii)=> (iv) Let Pe Att,(G). Then, by Lemma 3.1,
qe Att, (G). Suppose that q = VO:RN, where N is a
quotient of G, say,

N=...+(0a) N +0,a“")/N,_ +...+0:,a)/N +0+0+... .

Thus, fori> 1,N; <(0:,,a)andaN,  cN..Since 0N there
is k21 such that N,_# (0:,,a%). Let n be the least integer i
such that N, # (0:,,a"). Consider the R-module
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N'=...+ (0:, 2% / (N:a*") +...+ (0:, a™") / (N :a) +
©: aN+0+0+...,

which is isomorphic to a quotient of N. So N’ is g-
secondary R-module and q = Y0, :N". Butitis easy tosee
tha‘tV()R :N'nAC VNn:A(OM:a“) and from the relation

a* (0,2 a") < (0,;:a) the reverse inclusion will follow,
Thus

YN.: (0, a=Y0r: N'nA=gnA=p.

Next a is finitely generated and hence for all large
k(keIN) a*T* N'= 0,i. e. a* (0:,,a™) ¢ N,. Therefore
pe Att [(0:,,a%)/ a* (0:,,a™9)].

(iv)=() Let (0:,, a")/N be a p-secondary quotient of
(0:, a")/a* (0:,, 2" (k is large enough), where a* (0, a™)
cNc(0:,,a"). ByLemma(2.1) (i), (a)*=(0:,a*(0:,, a“‘*))
2 (0:, N) for large k. So (0:,, (@")*)< (0:,, (0:,N)) : =1
Now {0:,,a")/ N, is isomorphic to a quotient of (0, a‘)lN
and hence p- secondary On the other hand, (0: a")/N is
momorphlc to a quotient of (0:,, a"/ (0, (a“)*) and so

pe Att [(0:,, 2"/ (0:,, (@)™)].

Corollary 3.3. Let P, p and G be the same as in 3.1. Then
P will be an attached prime ideal of G (as an $Z-module) in
each of the following cases:

(1) pe Att (0:,, a"MAtt (0:,, (a)*) for some n 21;

(2) pe Att (0:,a") \Att (0:,,a™") for some n 21;

(3) pe Att [(0:,,a")/ (0:,,a™ )] \Att [(0:,, a™)A0:, a%)]
for some n 21;

(4) pe Att[(0:,,a")/(0: n“)]\Att[(O a0, a““‘ )]
for somen>1

Proof. From the exact sequence
0->(0:,, (a")*)—(0:,,a")—(0:,,a")/(0:,, (a")*)—0

and [2, 4.1] we get
Att (0, avc At (0:, (a”*)u At [(0:,, a"/(O0:,, (8")*)].

So if p is as in (1), then pe Att [(0:,,a")/(0:,, (a%)*] for
some n21; and hence the result follows from Theorem
(3.2)() =(ii).

(2),(3).For (2),let b = A and for (3) letb, = a™'. Then
pe At {(0:,, a)/(0:, b)MNu [(0:,, a*")/(0:,, ab,)]. Since

- Auf(0:,,a™")/0: ab)lc At [(0:,a*)/(0: b )], theresult
follows from Theorem 3.2 (if)=>(iii).

(4). Let b =a%. Then peAn[(0:, a"/(0:, b)] and
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pe Att [(0:, a™)/(0:,,b, )] But by [10, 1.3 (ii)] a™ isa
reduction of a a® (relative to M) and hence by {10, 2.4 ()]
aa® ca™!. Thus ab, < b_,, andsop e Aut [(0:, a")/
(©:,, b))\ A [(0:,, a™1)/(0:,,ab )]. To complete the proof
we use Theorem (3.2) (if)=>(iii) once more.

For the last Theorem, we need aLemma, whichis given
below. This Lemma is essentially Theorem 2.9 of [13] and
so we omit the proof,

Lemma 3.4. Let the notation be as in Lemma 2.2 and

v 3
further suppose that b denotes the ideal Y, SaT) of %

i iml
Then pe Bt* (a,M) if and only if there exists ge Att,, (G)
such that b éq andqnA =p.

Theorem 3.5. Let the notation be the same as in Lemma

2.2. Let neIN besuchthatpe Att (0, a"\At*(a,M). Then
P is the only attached prime ideal of G (as an 9%-module)
which intersect A at p.

Proof. We may assume (and do so) that pe Att (0:, 8"\ Att
(0:,, @™"). Then, by Corollary 3.3 (2), P-eAtt,, (G). But
peBt* (a,M) and hence, by Lemma 3.4, P is the only
attached prime ideal of G which intersects A at p.

Examples
In this section, we give two examples concerning the
ideas we have encountered. The firstexample s, in fact,an
adaptation of Example A of [3] to the Artinian situation.

Example 4,1, Let F be a field and x be an indeterminate.
LetM=F[x'] be the inverse polynomial module. By
[1,§2},M is an Artinian F [x]- module. Let A = {o +
x’g(x) lg(x) F[x]}, p=xFIx] nA anda = (x*,x*) A. Then
a#a* =@ = p. Also, for n>2, a" = (a%* = a’ =p", Finally,

with the same notation as Lemma 2.2 (p, aT, T*)4Z is not
an attached prime ideal of G and hence

At (0:, )¢ Att (0:,,a%)c...... .

Proof. First we show that M is an Artinian A-module. We
note that

M= 0 05, GFIIE U O3, GFIX] NAY) = U 0: ).

Thus, M=U (0:,,p). By [4, 1.3), it is enough to show that
(0:,,p) is an Artinian A-module. Now, since A is aNortherian
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ring and (0:,p) = 0:x%) = {a+ ax’ + o,x?lo €F},
(0:,p) is a Noetherian A-module. On the other hand,
(0:,,p) is annihilated by p, which is a maximal ideal of A,
(xF[x] is a maximal ideal of F{x], and F[x] is the integral
closure of A) we deduce that (0:,p) is an Artinian A-
module. k

Ttis casy to see that p=(x%, x*, x*) A and p? = (x°, x’, x®)A
=a’. Thus (0:,p?)=(0:,,2%) and, by Lemma 2.1 (iii) and (v),
pca* ca. Buta#A and p is maximal and so we have p =
a* =a. Since x*c a* and x’¢ a, we get aza*.

Now for n> 2, we have a" = (x x>, x™%) A = p" =

x* FxlnAcx3n A. Also x* Ac a"c x 3" A, Therefore a®

=x3" A=p". Thus, by Lemma 2.1 p’= a°C (a")* cai=p"
and the result follows.

Finally, since (0:,,p)= (0:,,a*)=(0:,,a) and a"=(a")* for
n22, we get (0: , (a")*) = (0: »a") for all n21. Hence, by
Theorem3.2,(T",p,aT)e Att_(G). Thus, by corollary 3.3,

Att (0, @) Att (0, a%)c... .

Example 4.2. (See [6, §5]). Letp,, p,, ..., p, be distinct
primeintegers,andlet n,,n,, ...,n_bepositive integers. We
shalllet M denote the additive group modulo | R RETN N
We can regard M as a Z'module in the usual way. Every
submodule of M may be single generated, and we use <m>
to denote the submodule of M which is generated by the
integer m of M,

By [6, §5] the secondary submodules of M are those
generated by element p *'p...p %, where all but one of
the W’s are equal to the corresponding n, and the single
exception satisfies 0< . <n.. Since M is finite, M is an
Artinian Zmodule and so each submodule of M has a
secondary decomposition in M. The submodule of M
generatedbyp, ™1...p, ™, 0<m<n, 1 <i<k, has asecondary
decomposition.

K

mipn M2 miy o n1 Nl N ni+l nk:

<p,™p,™...p, >—_21:<pl <D, DD, L p >
j=

and so Att (<p, ™1 p,™2...p">) ={p,Z I m #n}. Also let

a=<p,p,..p> Thena = a* =a and At (0: ,a) =

Aw(0:, a)=....
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Proof. The first part is easy. For the second part we note
thatif <b>is areduction of arelative to M, then itis readily
seen that<b>=a. Thus, by [10,2.5], a=a and so a=a*=a by
Lemma (2.1) (iii).

Finally, it is easy to see that (0:,a') = <p™1-i...pie-,
(with the convention that p?t'i= 1 whenever n-i<0.). Thus
by the first part At (0:, @) = {p Z p,Z....p T} for all i>1.
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