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Abstract 

In this paper we give some characterizations of topological extreme 
amenability. Also we answer a question raised by Ling [5]. In particular we prove 
that if T is a Borel subset of a locally compact semigroup S such that M(S)* has a 
multiplicative topological left invariant mean then T is topological left lumpy if 
and only if there is a multiplicative topological left invariant mean M on M(S)* 
such that M(χT)=1, where χT is the characteristic functional of T. Consequently if T 
is a topological left lumpy locally compact Borel subsemigroup of a locally 
compact semigroup S, then T is extremely topological left amenable if and only if 
S is. 
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1. Introduction 

Let S be a locally compact (Hausdorff) semigroup. 
Let Co(S) be the subalgebra of CB(S) consisting of 
functions which vanish at infinity. Let M(S)* be the 
Banach space of all bounded regular Borel (signed) 
measures on S with total variation norm. 

Let { }0 ( ) ( ) : 0 and 1M S M Sµ µ µ= ∈ ≥ =  be 

the set of all probability measures in M(S). It is known 
that 0( ) ( )M S C S ∗=  via the correspondence µ µ→  

where ( )f f dµ µ= ∫  for any f in Co(S) [4, § 14]. 
Consider the continuous dual ( )M S ∗ of ( )M S . 
Denote by 1the element 1 in ( )M S ∗ such that such that 
1( ) ( )Sµ µ=  for any µ  in M(S). 

Also if T is a Borel subset of S we define the Borel 
characteristic functional Tχ  of T in M(S)* by 

Tχ ( µ )= µ (T), µ∈M(S). An element M in M(S)** is 
called a mean on M(S) if M(1)=1 and M(F) ≥ 0, 
whenever 0F ≥ . An equivalent definition for a mean is 
that 

{ }

{ }

inf ( ) : ( )

( ) sup ( ) : ( )

o

o

F M S

M F F M S

µ µ

µ µ

∈

≤ ≤ ∈
 

for any F in ( )M S ∗ . We also note that **( )M M S∈  
is a mean if and only if ||M||=M(1)=1. Each probability 
measure µ  in Mo(S) is a mean on M(S)** if we put 
µ (F)=F( µ ), for any F in M(S)*. An application of 
Hahn-Banach separation theorem shows that Mo(S) is 
weak* dense in the set of all means on M(S)*. 

Under pointwise operations and supremum norm 
Co(S) becomes a Banach algebra. Arens product can 
thus be defined in Co(S)**. In particular, we have the 
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following defining formulas for any f, g in Co(S), m in 
Co(S)* and θ , ϕ  in Co(S)**. 

( )( ) ( )

( )( ) ( )

( )( ) ( )

m f g m fg

m f m f

m m

ϕ ϕ

θ ϕ θ ϕ

=

=

=

 

This product induces a multiplication in M(S)* via the 
identification M(S)=Co(S)*. For F, G in M(S)* we denote 
the multiplication of F and G by F × G. In [5] it is 
shown that F × G is defined via the following three 
steps: 

(i)  For any ( )M Sµ∈  and ( )of C S∈ , 
( )f M Sµ ∈  is defined by  

for all ( )f og d g f d g C Sµ µ= ∈∫ ∫  

(ii)  For any ( )M Sµ∈  and *( )G M S∈ , G × 
( )M Sµ∈  is defined by  

( ) ( ) ( )f of d G G for all f C Sµ µ× = ∈∫  

(iii)  For any F, G *( )M S∈ , F × G *( )M S∈ is 
defined by  

( ) ( ) ( ) for all ( ).F G F G M Sµ µ µ× = × ∈  

Then M(S)* becomes a commutative Banach algebra 
with identity [5, theorem 1.2.3]. 

For each µ  in M(S) define an operator 
* *: ( ) ( )l M S M Sµ → by 

*( ) ( ), ( ),l F F v M Sµ ν µ ν= ∈  we denote l Fµ  by 
Fµ . A mean M on M(S)* is called topological left 

invariant (TLIM) if ( )M Fµ  = ( )M F  for all 
*( )F M S∈  and for all ( )oM Sµ ∈ . A topological 

left invariant mean M on M(S)* is called a multiplicative 
topological left invariant mean (MTLIM) if  

*( ) ( ) ( ) for all , ( )M F G M F M G F G M S× = ∈ . 

If there is a MTLIM on M(S)* we say that S is 
extremely topological left amenable (ETLA). For results 
concerning ETLA semigroups see [5] and [6]. 

2. Main Results 

Note that for elements M, N in M(S)** their Arens 
product is denoted by M N  and is defined by  

( )( ) ( ( )) for all ( )*LM N F M N F F in M S=  

where * *: ( ) ( )LN M S M S→  is defined by 
( ) ( )LN N Fµ µ= , ( )M Sµ ∈ . See [1] and [2]. 

First we prove two Lemmas. 
 

Lemma 2.1.  Suppose M and N are functionals in 
M(S)**. 

(i)  If M and N are means on M(S)* then M N  is 
also a mean on M(S)*. 

(ii)  For each ( )M Sµ∈  and each *( )F M S∈  we 
have 

( ) ( )L LM F M Fµ µ=  

(iii)  If M is a topological left invariant mean, then 
M N  is also topological left invariant. 

 
Proof.  (i) It is easy to see that for each ( )M Sµ ∈  
and *1 ( )M S∈  we have 1 1( )µ µ= , hence 

( )(1) ( (1)) (1) 1LM N M N M= = =  

Also ,M N M N≤  hence M N  is a 
mean on M(S)*. 

(ii)  For each ( )M Sν ∈  

( )( ) ( ( ))

(( ) )

( )( )

( ( ))( )

L

L

L

M F M F

M F

M F

M F

µ ν ν µ

µ ν

µ ν

µ ν

=

= ∗

= ∗

=

 

Thus ( ) ( )L LM F M Fµ µ= . 
(iii)  Suppose M is topological left invariant, then for 

each ( )oM Sµ∈  and *( )F M S∈  we have 

( )( ) ( ( ))

( ( ))

( ( ))

( )( )

L

L

L

M N F M N F

M N F

M N F

M N F

µ µ

µ

=

=

=

=

 

where we have used (ii) in the second equality. So 
M N  is topological left invariant, whenever M is. 

 
Lemma 2.2.  For each s S∈ , *( )F M S∈  and 

**( )M M S∈  we have 
(i)  ( ) ( )S L sF Fε ε=  
(ii)  ( )( ) ( )S SM F M Fε ε=  
(iii)  ( ) ( ) ( )S L SF G F Gε ε× = ×  
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         ( ) ( )S SF Gε ε= ×  
(iv)  If M is multiplicative, then sM ε  is so. 
 

Proof.  (i) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

s L s s

s s

F F F

F F

ε µ ε µ µ ε

µ ε ε µ

= =

= ∗ =
 

hence ( ) ( )s L sF Fε ε= . 
(ii)  ( )( ) (( ) ( )) ( )s s L sM F M F M Fε ε ε= =  

where we have used (i) in the second equality. 
(iii)  the first equality follows from (i) and the second 

one follows from [5, p.27] 
(iv)  Suppose **( )M M S∈  is multiplicative. Then: 

( )( ) (( ) ( ))

(( ) ( ))

( ) ( )

(( )( ))(( )( ))

s s L

s S

s s

s S

M F G M F G

M F G

M F M G

M F M G

ε ε

ε ε

ε ε

ε ε

× = ×

= ×

=

=

 

where we have used (iii) in the second equality and (ii) 
in the last equality.  

The following theorem is an extension of [5, theorem 
3.2.1]. But first we need a definition. 

 
Definition 2.3.  Let S be a locally compact semigroup 
and T a Borel subset of S. T is said to be topological left 
lumpy in S if it satisfies the following condition. 

(TLL) For each 0δ >  and ( )oM Sµ∈  with 
compact support, there exists a S∈  such that 

* ( ) 1a T µـ ε δ> . 
It is known that (TLL) is equivalent to each of the 

following conditions: 
(TLL)1 For any 0δ >  and ( )oM Sν ∈  with 

compact support, there exists ( )oM Sµ∈  with compact 
support such that 

( )( ) 1 and ( ) 1T Tµ δ ν µ δ> − ∗ > −  

(TLL)2 For any 0δ >  and ( )oM Sν ∈  with 
compact support, there exists ( )oM Sµ∈  with compact 
support such that  

( )( ) 1 and ( ) 1T Tµ δ ν µ δ> − ∗ > −  

See [7, pp. 571-574 and addendum on p.585] for 
more details. See also [3]. 
Theorem 2.4.  Suppose T is a Borel subset of a locally 
compact semigroup S. Suppose M(S)* has a MTLIM 
then the following statements are equivalent: 

(i)  T is topological left lumpy. 
(ii)  There is a MTLIM on M(S)* such 

that ( ) 1TM χ = . 
 

Proof.  (i) ⇒ (ii). Let { }1 ,...., kF µ µ=  be a finite 

subset of 0 ( )cM S  (The elements in Mo(S) with 
compact support). For each 0ε >  there is 

( , )Fs s Sε= ∈  such that 1 ....
( ) 1

2
k

s T ـ
k

µ µ εε
+ +

∗ >  

(by TLL), in particular ( ) 1 , 1i T i kµ ε ε∗ > − ≤ ≤ . 
Let F be the collection of all finite (nonempty) 

subsets of 0 ( )cM S . Put (0, )F∆ = × ∞  and order ∆  as 
following: 

1 1 2 2 2 1 1 2( , ) ( , ) andF F F Fα α α α≥ ⇔ ⊆ <  

By above discussion there is a net { }s α  of elements 
of S with ( , )Fγ α= ∈∆ . Since the set of means on 

M(S)* is weak* compact the net { }sα
ε  has a subnet 

{ }s β
ε  which converges weak* to a mean N on M(S)* 

and also for each 0 ( )cM Sµ ∈  we have 

( ) ( )( )

( )( ) 1

T T s

s

N Lim

Lim T

β

β

β

β

µ χ µ χ ε

µ ε

=

= ∗ =
 (1) 

Now suppose M is MTLIM on M(S)*. Since the 
Arens product is weak* continuous in the second 
variable and using Lemma 2.2 (iv) we conclude that 
M N  is multiplicative. Also since M and N are 
means and M is topological left invariant, by using 
Lemma 2.1 we conclude that M N  is a MTLIM on 
M(S)*. Now since 0 ( )cM S  is weak* dense in the set of 
means on M(S)*, by using (1) we obtain 
( )( ) 1TM N χ = . 

(ii) ⇒  (i) Suppose M is a MTLIM on M(S)* such 
that ( )TM χ . If { }αµ  is a net in 0 ( )cM S  which 
converges to M in weak* topology, then for each 

0 ( )cM Sν ∈  we have 

( )* lim 0M Mα αα
ω ν µ µ ν− ∗ − = − =  
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Since lim ( ) ( ) 1TT Mαα
µ χ= =  and for each 

0 ( )CM Sν ∈   

( )( ) ( ) ( )( )T T Tα α αν µ χ χ ν µ ν µ∗ = ∗ = ∗  

We conclude that for each 0 ( ),cM Sν ∈  
lim ( )( ) 1.Tα αν µ∗ =  

So for each 0 ( )cM Sν ∈  and each 0δ >  there is 

0 ( )cM Sαµ µ= ∈  such that ( )( ) 1 .Tν µ δ∗ > −  
Therefore by (TLL)2, T is topological left lumpy. 

Let S be a locally compact semigroup and T a locally 
compact Borel subsemigroup of S. We recall some of 
the constructions in [8] and [9]. 

Let ( )B S  be the σ -algebra of Borel subsets of S. 
(1)  Let ( )M Sµ ∈ , then Tµ  is the restriction of µ  

to ( )B T and ( )T M Tµ ∈ . 

(2)  Let *( )F M T∈ , then *( )F M S′∈  is well-
defined by ( ) ( )TF Fµ µ′ =  for any ( )M Sµ ∈ . 

(3)  Let ( )M M S ∗∗∈ , then 0 ( )M M T ∗∗∈ is well-
defined by 0 ( ) ( )M F M F ′=  

For any ( )F M T∈ ∗ . 
 

Lemma 2.5.  (a) ( )T TF Fµ µ′× = ×  for *( )F M T∈  
and ( )M Sµ ∈ . 

(b)  ( )F G F G′ ′ ′× = ×  for any *, ( )F G M T∈ . 
 

Proof.  (a) For any ( )A B T∈  we denote Aξ  for 
characteristic function of A in T and Tχ  for 
characteristic function of A is S. 

( )( ) ( ) (( ) )

(( ) ) ( )

( )

( )( ) ( ) ( )

A

A A

T A T T

T

A

T

F A d F F

F F

d F

F A F A

ξ

χ χ

µ ξ µ µ

µ µ

χ µ

µ µ

× = × =

′= =

′= ×

′ ′= × = ×

∫

∫
 

(b)  For any ( )M Sµ ∈  by (a) we have  

( )( ) ( ) (( ) )

( )

( ) ( ) ( ) ( )

T

T

T

F G F G F G

F G

F G F G

µ µ µ

µ

µ µ

′ ′ ′ ′ ′× = × = ×

= ×

′= × = ×

 

We now state the main result of this paper which 
answers a question raised by J.M. Ling, See [5, then P. 
51]. 

Theorem 2.6.  Let T be a topological left lumpy locally 
compact Borel subsemigroup of a locally compact 
semigroup S. Then T is ETLA if and only if S is ETLA. 

 
Proof.  Suppose T is ETLA, then by [5, Theorem 3.2.3] 
S is ETLA. 

Conversely suppose S is ETLA, by theorem 2.4 there 
is a MTLIM on M(S)* such that ( ) 1TM χ = . Then 
M0(F)= ( )M F ′  defines a TLIM on M(T)*, we show 
that M0 is multiplicative 

0

0 0

( ) (( ) ) ( )

( ) ( )

( ) ( )

M F G M F G M F G

M F M G

M F M G

′ ′ ′× = × = ×

′ ′=

=

 

 
Corollary 2.7.  Let T be a left ideal of a locally compact 
semigroup S, Then M(T)* has a MTLIM if and only if 
M(S)* has a MTLIM. 

 
Proof.  It suffices to show that every left ideal is 
topological left lumpy. Let t T∈ . If K S⊆  is compact 
then Kt ST T⊆ ⊆ . Consider the Dirac measure ε  at t. 
For any 0 ( )M Sµ ∈  with ( ) 1Kµ = , we have 

( )t Tµ ε∗  = ( ) ( )T xt d xχ µ∫  = ( ) ( )T
K

xt d xχ µ∫  = 

( )Kµ  = 1, hence T is topological left lumpy. 
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