Topological Lumpiness and Topological Extreme Amenability

A.H. Riazi^{*}

Faculty of Mathematics and computer science, Amirkabir University of Technology, Tehran, Islamic Republic of Iran

Abstract

In this paper we give some characterizations of topological extreme amenability. Also we answer a question raised by Ling [5]. In particular we prove that if *T* is a Borel subset of a locally compact semigroup *S* such that $M(S)^*$ has a multiplicative topological left invariant mean then *T* is topological left lumpy if and only if there is a multiplicative topological left invariant mean *M* on $M(S)^*$ such that $M(\chi_T)=1$, where χ_T is the characteristic functional of *T*. Consequently if *T* is a topological left lumpy locally compact Borel subsemigroup of a locally compact semigroup *S*, then *T* is extremely topological left amenable if and only if *S* is.

Keywords: Mean; Topological extreme amenability; Left lumpy

1. Introduction

Let *S* be a locally compact (Hausdorff) semigroup. Let $C_o(S)$ be the subalgebra of CB(S) consisting of functions which vanish at infinity. Let $M(S)^*$ be the Banach space of all bounded regular Borel (signed) measures on *S* with total variation norm.

Let $M_0(S) = \{ \mu \in M(S) : \mu \ge 0 \text{ and } \| \mu \| = 1 \}$ be the set of all probability measures in M(S). It is known that $M(S) = C_0(S)^*$ via the correspondence $\mu \to \overline{\mu}$ where $\overline{\mu}(f) = \int f d\mu$ for any f in $C_0(S)$ [4, § 14]. Consider the continuous dual $M(S)^*$ of M(S). Denote by 1 the element 1 in $M(S)^*$ such that such that $1(\mu) = \mu(S)$ for any μ in M(S).

Also if *T* is a Borel subset of *S* we define the Borel characteristic functional χ_T of *T* in $M(S)^*$ by

 $\chi_T(\mu) = \mu(T), \ \mu \in M(S)$. An element *M* in $M(S)^{**}$ is called a mean on M(S) if M(1)=1 and $M(F) \ge 0$, whenever $F \ge 0$. An equivalent definition for a mean is that

$$\inf \left\{ F(\mu) : \mu \in M_{o}(S) \right\}$$
$$\leq M(F) \leq \sup \left\{ F(\mu) : \mu \in M_{o}(S) \right\}$$

for any *F* in *M* (*S*)^{*}. We also note that $M \in M$ (*S*)^{**} is a mean if and only if ||M||=M(1)=1. Each probability measure μ in $M_0(S)$ is a mean on $M(S)^{**}$ if we put $\mu(F)=F(\mu)$, for any F in $M(S)^*$. An application of Hahn-Banach separation theorem shows that $M_0(S)$ is weak^{*} dense in the set of all means on $M(S)^*$.

Under pointwise operations and supremum norm $C_0(S)$ becomes a Banach algebra. Arens product can thus be defined in $C_0(S)^{**}$. In particular, we have the

^{*}*E-mail: riazi@aut.ac.ir*

Riazi

following defining formulas for any f, g in $C_0(S)$, m in $C_0(S)^*$ and θ , φ in $C_0(S)^{**}$.

$$(m \odot f)(g) = m(fg)$$
$$(\varphi \odot m)(f) = \varphi(m \odot f)$$
$$(\theta \odot \varphi)(m) = \theta(\varphi \odot m)$$

This product induces a multiplication in $M(S)^*$ via the identification $M(S)=C_0(S)^*$. For F, G in $M(S)^*$ we denote the multiplication of F and G by F × G. In [5] it is shown that F × G is defined via the following three steps:

(i) For any $\mu \in M(S)$ and $f \in C_o(S)$, $\mu_f \in M(S)$ is defined by

$$\int g \, d \, \mu_f = \int g f \, d \, \mu \quad \text{for all } g \in C_o \left(S \right)$$

(ii) For any $\mu \in M(S)$ and $G \in M(S)^*$, $G \times \mu \in M(S)$ is defined by

$$\int f d(G \times \mu) = G(\mu_f) \text{ for all } f \in C_o(S)$$

(iii) For any F, G $\in M(S)^*$, F \times G $\in M(S)^*$ is defined by

$$(F \times G)(\mu) = F(G \times \mu)$$
 for all $\mu \in M(S)$.

Then $M(S)^*$ becomes a commutative Banach algebra with identity [5, theorem 1.2.3].

For each μ in M(S) define an operator $l_{\mu}: M(S)^* \to M(S)^*$ by

 $l_{\mu}F(\nu) = F(\mu_*\nu), \nu \in M(S)$, we denote $l_{\mu}F$ by $\mu \odot F$. A mean M on $M(S)^*$ is called topological left invariant (TLIM) if $M(\mu \odot F) = M(F)$ for all $F \in M(S)^*$ and for all $\mu \in M_o(S)$. A topological left invariant mean M on $M(S)^*$ is called a multiplicative topological left invariant mean (MTLIM) if

$$M(F \times G) = M(F)M(G)$$
 for all $F, G \in M(S)^*$.

If there is a MTLIM on $M(S)^*$ we say that S is extremely topological left amenable (ETLA). For results concerning ETLA semigroups see [5] and [6].

2. Main Results

Note that for elements M, N in $M(S)^{**}$ their Arens product is denoted by $M \odot N$ and is defined by

$$(M \odot N)(F) = M(N_{I}(F))$$
 for all F in $M(S)^{*}$

where $N_L: M(S)^* \to M(S)^*$ is defined by $N_L(\mu) = N(\mu \odot F), \ \mu \in M(S)$. See [1] and [2]. First we prove two Lemmas.

Lemma 2.1. Suppose M and N are functionals in $M(S)^{**}$.

(i) If *M* and *N* are means on $M(S)^*$ then $M \odot N$ is also a mean on $M(S)^*$.

(ii) For each $\mu \in M(S)$ and each $F \in M(S)^*$ we have

 $M_{L}(\mu \odot F) = \mu \odot M_{L}(F)$

(iii) If *M* is a topological left invariant mean, then $M \odot N$ is also topological left invariant.

Proof. (i) It is easy to see that for each $\mu \in M(S)$ and $1 \in M(S)^*$ we have $\mu \odot 1 = 1(\mu)$, hence

 $(M \odot N)(1) = M (N_{L}(1)) = M (1) = 1$

Also $|| M \odot N || \le ||M|| ||N||$, hence $M \odot N$ is a mean on $M(S)^*$.

(ii) For each $v \in M(S)$

$$M_{L}(\mu \odot F)(v) = M (v \odot (\mu \odot F))$$
$$= M ((\mu * v) \odot F)$$
$$= M_{L}(F)(\mu * v)$$
$$= (\mu \odot M_{L}(F))(v)$$

Thus $M_L(\mu \odot F) = \mu \odot M_L(F)$.

(iii) Suppose *M* is topological left invariant, then for each $\mu \in M_{a}(S)$ and $F \in M(S)^{*}$ we have

$$(M \odot N)(\mu \odot F) = M (N_{L} (\mu \odot F))$$
$$= M (\mu \odot N_{L} (F))$$
$$= M (N_{L} (F))$$
$$= (M \odot N)(F)$$

where we have used (ii) in the second equality. So $M \odot N$ is topological left invariant, whenever M is.

Lemma 2.2. For each $s \in S$, $F \in M(S)^*$ and $M \in M(S)^{**}$ we have

(i)
$$(\varepsilon_s)_L(F) = F \odot \varepsilon_s$$

(ii) $(M \odot \varepsilon_s)(F) = M (F \odot \varepsilon_s)$
(iii) $(\varepsilon_s)_L(F \times G) = (F \times G) \odot \varepsilon_s$

$$= (F \odot \varepsilon_s) \times (G \odot \varepsilon_s)$$

(iv) If *M* is multiplicative, then $M \odot \varepsilon_s$ is so.

Proof. (i)

$$(\varepsilon_s)_L(F)(\mu) = \varepsilon_s(\mu \odot F) = (\mu \odot F)(\varepsilon_s)$$
$$= F(\mu * \varepsilon_s) = (F \odot \varepsilon_s)(\mu)$$

hence $(\varepsilon_s)_L(F) = F \odot \varepsilon_s$.

(ii) $(M \odot \varepsilon_s)(F) = M ((\varepsilon_s)_L(F)) = M (F \odot \varepsilon_s)$

where we have used (i) in the second equality.

(iii) the first equality follows from (i) and the second one follows from [5, p.27]

(iv) Suppose $M \in M(S)^{**}$ is multiplicative. Then:

$$(M \odot \varepsilon_s)(F \times G) = M ((\varepsilon_s)_L (F \times G))$$
$$= M ((F \odot \varepsilon_s) \times (G \odot \varepsilon_s))$$
$$= M (F \odot \varepsilon_s) M (G \odot \varepsilon_s)$$
$$= ((M \odot \varepsilon_s)(F))((M \odot \varepsilon_s)(G))$$

where we have used (iii) in the second equality and (ii) in the last equality.

The following theorem is an extension of [5, theorem 3.2.1]. But first we need a definition.

Definition 2.3. Let S be a locally compact semigroup and T a Borel subset of S. T is said to be topological left lumpy in S if it satisfies the following condition.

(TLL) For each $\delta > 0$ and $\mu \in M_o(S)$ with compact support, there exists $a \in S$ such that $\mu * \varepsilon_a(T) > 1 - \delta$.

It is known that (TLL) is equivalent to each of the following conditions:

 $(TLL)_1$ For any $\delta > 0$ and $\nu \in M_o(S)$ with compact support, there exists $\mu \in M_o(S)$ with compact support such that

$$\mu(T) > 1 - \delta$$
 and $(v * \mu)(T) > 1 - \delta$

(TLL)₂ For any $\delta > 0$ and $v \in M_o(S)$ with compact support, there exists $\mu \in M_o(S)$ with compact support such that

$$\mu(T) > 1 - \delta$$
 and $(\nu * \mu)(T) > 1 - \delta$

See [7, pp. 571-574 and addendum on p.585] for more details. See also [3].

Theorem 2.4. Suppose *T* is a Borel subset of a locally compact semigroup *S*. Suppose $M(S)^*$ has a MTLIM then the following statements are equivalent:

(i) T is topological left lumpy.

(ii) There is a MTLIM on $M(S)^*$ such that $M(\chi_T) = 1$.

Proof. (i) \Rightarrow (ii). Let $F = \{ \mu_1, ..., \mu_k \}$ be a finite subset of $M_0^c(S)$ (The elements in $M_0(S)$ with compact support). For each $\varepsilon > 0$ there is $s = s_{(F,\varepsilon)} \in S$ such that $\frac{\mu_1 + ... + \mu_k}{k} * \varepsilon_s(T) > 1 - \frac{\varepsilon}{2}$ (by TLL), in particular $\mu_i * \varepsilon(T) > 1 - \varepsilon$, $1 \le i \le k$.

Let F be the collection of all finite (nonempty) subsets of $M_0^c(S)$. Put $\Delta = F \times (0, \infty)$ and order Δ as following:

 $(F_1, \alpha_1) \ge (F_2, \alpha_2) \Leftrightarrow F_2 \subseteq F_1 \text{ and } \alpha_1 < \alpha_2$

By above discussion there is a net $\{s_{\alpha}\}$ of elements of *S* with $\gamma = (F, \alpha) \in \Delta$. Since the set of means on $M(S)^*$ is weak^{*} compact the net $\{\varepsilon_{s_{\alpha}}\}$ has a subnet $\{\varepsilon_{s_{\beta}}\}$ which converges weak^{*} to a mean N on $M(S)^*$ and also for each $\mu \in M_0^c(S)$ we have

$$N(\mu \odot \chi_T) = \lim_{\beta} (\mu \odot \chi_T)(\varepsilon_{s_{\beta}})$$

= $\lim_{\beta} (\mu * \varepsilon_{s_{\beta}})(T) = 1$ (1)

Now suppose M is MTLIM on $M(S)^*$. Since the Arens product is weak^{*} continuous in the second variable and using Lemma 2.2 (iv) we conclude that $M \odot N$ is multiplicative. Also since M and N are means and M is topological left invariant, by using Lemma 2.1 we conclude that $M \odot N$ is a MTLIM on $M(S)^*$. Now since $M_0^c(S)$ is weak^{*} dense in the set of means on $M(S)^*$, by using (1) we obtain $(M \odot N)(\chi_T) = 1$.

(ii) \Rightarrow (i) Suppose *M* is a MTLIM on $M(S)^*$ such that $M(\chi_T)$. If $\{\mu_{\alpha}\}$ is a net in $M_0^c(S)$ which converges to *M* in weak^{*} topology, then for each $v \in M_0^c(S)$ we have

$$\omega^* - \lim_{\alpha} \left(v * \mu_{\alpha} - \mu_{\alpha} \right) = v \odot M - M = 0$$

Since $\lim_{\alpha} \mu_{\alpha}(T) = M(\chi_{T}) = 1$ and for each $\nu \in M_{0}^{C}(S)$

$$(v * \mu_{\alpha})(\chi_T) = \chi_T (v * \mu_{\alpha}) = (v * \mu_{\alpha})(T)$$

We conclude that for each $v \in M_0^c(S)$, $\lim_{\alpha} (v * \mu_{\alpha})(T) = 1.$

So for each $v \in M_0^c(S)$ and each $\delta > 0$ there is $\mu = \mu_\alpha \in M_0^c(S)$ such that $(v * \mu)(T) > 1 - \delta$. Therefore by (TLL)₂, *T* is topological left lumpy.

Let S be a locally compact semigroup and T a locally compact Borel subsemigroup of S. We recall some of the constructions in [8] and [9].

Let B(S) be the σ -algebra of Borel subsets of S.

(1) Let $\mu \in M(S)$, then μ_T is the restriction of μ to B(T) and $\mu_T \in M(T)$.

(2) Let $F \in M(T)^*$, then $F' \in M(S)^*$ is welldefined by $F'(\mu) = F(\mu_T)$ for any $\mu \in M(S)$.

(3) Let $M \in M(S)^{**}$, then $M_0 \in M(T)^{**}$ is welldefined by $M_0(F) = M(F')$

For any $F \in M(T) *$.

Lemma 2.5. (a) $F \times \mu_T = (F' \times \mu)_T$ for $F \in M(T)^*$ and $\mu \in M(S)$.

(b) $(F \times G)' = F' \times G'$ for any $F, G \in M(T)^*$.

Proof. (a) For any $A \in B(T)$ we denote ξ_A for characteristic function of A in T and χ_T for characteristic function of A is S.

$$(F \times \mu_T)(A) = \int \xi_A d (F \times \mu_T) = F ((\mu_T)_{\xi_A})$$
$$= F ((\mu_{\chi_A})_T) = F'(\mu_{\chi_A})$$
$$= \int \chi_A d (F' \times \mu)$$
$$= (F' \times \mu)(A) = (F' \times \mu)_T (A)$$

(b) For any $\mu \in M(S)$ by (a) we have

۴

$$(F' \times G')(\mu) = F'(G' \times \mu) = F((G' \times \mu)_T)$$
$$= F(G \times \mu_T)$$
$$= (F \times G)(\mu_T) = (F \times G)'(\mu)$$

We now state the main result of this paper which answers a question raised by J.M. Ling, See [5, then P. 51].

Theorem 2.6. Let T be a topological left lumpy locally compact Borel subsemigroup of a locally compact semigroup S. Then T is ETLA if and only if S is ETLA.

Proof. Suppose *T* is ETLA, then by [5, Theorem 3.2.3] *S* is ETLA.

Conversely suppose *S* is ETLA, by theorem 2.4 there is a MTLIM on $M(S)^*$ such that $M(\chi_T) = 1$. Then $M_0(F) = M(F')$ defines a TLIM on $M(T)^*$, we show that M_0 is multiplicative

$$M_{0}(F \times G) = M((F \times G)') = M(F' \times G')$$
$$= M(F')M(G')$$
$$= M_{0}(F)M_{0}(G)$$

Corollary 2.7. Let *T* be a left ideal of a locally compact semigroup *S*, Then $M(T)^*$ has a MTLIM if and only if $M(S)^*$ has a MTLIM.

Proof. It suffices to show that every left ideal is topological left lumpy. Let $t \in T$. If $K \subseteq S$ is compact then $Kt \subseteq ST \subseteq T$. Consider the Dirac measure ε at t. For any $\mu \in M_0(S)$ with $\mu(K) = 1$, we have $\mu * \varepsilon_t(T) = \int \chi_T(xt) d\mu(x) = \int_K \chi_T(xt) d\mu(x) =$

 $\mu(K) = 1$, hence *T* is topological left lumpy.

References

- 1. Arens R.F. The adjoint of a bilinear operator. *Proc. Amer. Math. Soc.*, **2**: 839-848 (1951).
- Civin P. and Yood B. The second conjugate space of a Banach algebra as an algebra. *Pacific. J. Math.*, 3: 847-870 (1961).
- Day M.M. Lumpy subsets in left amenable locally compact semigroups. *Ibibd.*, 62: 87-92 (1976).
- 4. Hewitt E. and Ross K.A. *Abstract Harmonic Analysis I*. Springer-Verlag, Berlin (1963).
- Ling J.M. Amenable and extremely amenable locally compact semi groups. *Ph.D. Thesis*, University of Calgary (1990).
- Riazi A. Extremely amenable locally compact semigroups. Atti. Sem. Mat. Fis. Univ. Modena XLV, 441-447 (1997).
- Wong J.C.S. On topological analogues of left thick subsets in semi groups. *Pacific. J. Math.*, 83: 571-585 (1979).
- Wong J.C.S. A characterisation of locally compact amenable subsemigroups. *Canada. Math. Bull.*, 23: 305-312 (1979).
- 9. Wong J.C.S. Absolutely continuous measures on locally compact semigroups. *Ibid.*, **18**: 127-131 (1975).