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1. Introduction and Preliminaries 

Wavelet analysis has found a wide range of 
applications in Physics, Engineering and applied 
mathematics in the last few years. The continuous 
wavelet transform on Affine and Heisenberg groups has 
been discussed during the last decade, but in one point 
of view these groups are semidirect product of two LCA 
groups. Many authors have considered, as a general 
form, the semidirect product group nH τ× \ , where 
H  is a locally compact group. 

For the reader's convenience, we provide a summary 
of the mathematical notations and definitions which are 
used in the sequel. For details we refer the reader to the 
general reference [12] or any standard book of harmonic 
analysis. 

Let G  be a locally compact group and ρH  be a 
Hilbert space. A unitary representation of G  is a 
homomorphism : ( )G ρρ → U H  where ( )ρU H  is the 
group of all unitary operators on ρH  and ρ  is 

continuous with respect to the strong (or weak) operator 
topology, namely, ( ) ,x x u vρ< >6  should be 
continuous from G  to the complex numbers for each 

,u v ρ∈H . ρH  is called the representation space of ρ , 
and its dimension is called the dimension of ρ . We 
shall consider only unitary representations. So when we 
say "representation" we always mean "unitary 
representation" unless the contrary is explicitly stated. 
We now introduce some standard terminology 
associated to unitary representations. If 1ρ  and 2ρ  are 
representations of G , an intertwining operator for 1ρ  
and 2ρ  is a bounded linear map 

1 2
:T ρ ρ→H H  such 

that 1 2( ) ( )T x x Tρ ρ=  for all x G∈ . The set of all 
such operators is denoted by 1 2( , )ρ ρC . 1ρ  and 2ρ  
are (unitary) equivalent if 1 2( , )ρ ρC  contains a unitary 
operator U , so that 1

2 1( ) ( )x U x Uρ ρ −= . We shall 
write ( )ρC  for ( , )ρ ρC . This is the space of bounded 
operators on ρH  that commute with ( )xρ  for every 
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x G∈ ; it is called the commutant of ρ . ( )ρC  is an 
algebra, closed under weak limit and adjoint. In short, 

( )ρC  is a weakly closed C ∗ -algebra of operators on 

ρH , that is, a von Neumann algebra. A closed subspace 
M  of ρH  is called invariant subspace for ρ  if 

( )x M Mρ ⊆  for all x G∈ . If ρ  is a unitary map of 
G  and u ρ∈H , the closed linear span uM  of 
{ ( ) : }x u x Gρ ∈  in ρH  is called the cyclic 
subspace generated by u . Clearly uM  is invariant 
under ρ . If uM ρ= H , u  is called a cyclic vector. 

Suppose M  is a non-zero closed and invariant 
subspace of ρH , the restriction of ρ  to M , 

( ) ( )M Mx xρ ρ=  defines a representation of G  on 
M , called a subrepresentation of ρ . One of the well 
known continuous unitary representations of a locally 
compact group is the left regular representation, which 
is defined by 2: ( ( ))L G U L G→ , yy L6  where 

1( ) ( )yL f x f y x−=  for all ,x y G∈ , and all 
2 ( )f L G∈ . A unitary representation ρ  on a Hilbert 

space ρH  is called irreducible if the only closed 
subspaces of ρH  that are invariant under ( )xρ  for all 
x G∈  are {0}  and ρH . Usually the left regular 
representation is not irreducible. For more details one 
can consult with [4]. 

Let G  be a locally compact group, and ρ  be a 
strongly continuous unitary irreducible representation of 
G  on a Hilbert space ρH . We wish to find a vector ψ  
in ρH  such that 

, ( ) ( ) ,
G

x x dx ρη ρ ψ ρ ψ η η< > = ∀ ∈∫ H , (1) 

where dx  is the left Haar measure of G . Finding such 
a vector is impossible in general [13]. However, ψ  
satisfies (1) if and only if 2| , ( ) |G x dxψ ρ ψ< > < ∞∫  
or 2| , ( ) |G x dxψ ρ η< > < ∞∫  for all ρη ∈H . Such a 
ψ  is called an admissible vector [3]. The irreducible 
representation ρ  is called square integrable if at least 
one nonzero admissible vector in ρH  exists. It is easy to 
show that if ρ  is square integrable then there exists a 
dense set of admissible vectors in ρH . Moreover if G  
is unimodular then every nonzero vector is admissible 
and so (1) holds for all ψ  in ρH . 

Now we fix an admissible vector ψ  in ρH  and 

define 2: ( )W L Gψ ρ →H  as follows:  

1
2( )( ) , ( ) , ,W g C g g Gψ ψ ρη η ρ ψ η
−

= < > ∈ ∈H  

where 2
21 | , ( ) |GC g dgψ ψ

ψ ρ ψ= < >∫ . W ψ  is called 

the continuous wavelet transform associated to ρ  and 
has the following properties [3,8]: 

-  W ψ  is a linear isometry onto a closed subspace, 

denoted by ψH , of 2 ( )L G . 
-  W ψ  intertwines ρ  and the left regular 

representation L , (i.e. ( ) gW g L W g Gψ ψρ = ∀ ∈ ) 

-  The adjoint of W ψ  and 1W ψ
−  coincide on ψH . 

-  The Inversion formula holds i.e. 
( )( ) ( )

G
W g g dg C for allψ ψη ρ ψ η η=∫ . (2) 

Define 1( )( ) ( ) ( )Gf g x f y g y x dx−∗ = ∫  whenever 
it makes sense. For a locally compact abelian group G, 
the set of all continuous characters (group 
homomorphisms from G to { ;| | 1}z z= ∈ =^T ) of G 
is called the dual group of G. When it is equipped with 
the topology of uniform convergence on compact 
subsets of G, it is a locally compact abelian group, 
denoted by Ĝ . For example: 

i) Let \  be the set of all real numbers with the usual 
topology. ( , )+\  is a locally compact unimodular group 

whose Haar measure is the Lebesgue measure. ˆ ≅\ \ , 
with the pairing 2, i xx e π γγ< >= , so the Lebesgue 
measure is self-dual.  

ii) The groups T  and ]  are dual to each other; the 
natural dual measures on them are the normalized 
Lebesgue measure 2

dθ
π  and counting measure on Z , 

respectively.  
For 1 2( ) ( )f L G L G∈ ∩ , the function ˆf  is defined 

on Ĝ  by ˆ ( ) ( ) ( )
G

f f x x dxγ γ= ∫  and is called the 

Fourier transform of f. We conclude this section with 
two well-known theorems. 

 
Theorem 1.1.  (Plancherel's theorem) The Fourier 
transform on 1 2( ) ( )L G L G∩  extends uniquely to a 

unitary isometry from 2 ( )L G  to 2 ˆ( )L G . More 

precisely, there exists a measure 
Ĝ

µ  on Ĝ  (the dual 

measure) such that for every 2 ( )f L G∈ , one has 
2ˆ ˆ( )f L G∈  and 

2 2
ˆf f= . Also the inverse Fourier 

transformation is a linear isometry of 2 ˆ( )L G  onto 
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2 ( )L G . These two transformations are inverses of 
each other. 
 
Corollary 1.2.  (Fourier Inversion Formula) If 

1 ( )f L G∈  and 1ˆ ˆ( )f L G∈  then 1ˆ ˆ( ) ( )( )f x f x −=  
for a.e. x; that is, 

ˆ
ˆ

ˆ( ) ( ) ( ) ( ),
G

G

f x f x dγ γ µ γ= ∫  

for a.e. x G∈ . If f  is continuous, these relations hold 
for every x G∈ . 

For example when G  is the Affine group (which is 
the semidirect product of the two LCA groups, 
( \{0},.)\  and ( , )+\ ), the group operations on G  are 

1 1( , )( , ) ( , ) , ( , ) ( , ).ba b c d ac b ad a b
a a

− −
= + =  

Now we define the quasi regular representation ρ  of 
G  on the Hilbert space 2 ( )L \  by ( ( , ) )( )a b f xρ  

1
2 ( )x b

aa f
−

−= . Then ρ  is an irreducible representation 

of G . Moreover a vector 2 ( )Lψ ∈ \  is an admissible 

vector for ρ  if 
2ˆ| ( )|2C dψ ω

ψ ω
ω= < ∞∫

\

, [13]. Hence for a 

wavelet vector ψ  we can define the CWT W ψ  by 

( , ) , ( , )W f a b f a bψ ρ ψ=< >  where 2 ( ),f L∈ \  
\{0},a b∈ ∈\ \  and rewrite the Inversion formula 

(2) as follows (for more details see [13]):  

2\{ 0 }
, ( , ) ( , ) .dadbf a b a b C f

a ψρ ψ ρ ψ< > =∫ ∫\ \
 

In this article we study these properties for the 
groups which are semidirect product of two locally 
compact groups. One should note that the above 
representation ρ  is not irreducible in general (for 
example in the Affine group by replacing \{0}\  with 
positive real numbers +\ ). We can overcome this 
problem by taking an irreducible subrepresentation ρ  
instead. Furthermore we investigate when this subrepre-
sentation is square integrable and how to obtain wavelet 
vectors. In most cases the general form of the Affine 
group is a semidirect product where is a closed 
subgroup (not necessarily abelian) of H. Fuhr and S.T. 
Ali provide a comprehensive study of CWT on these 
groups [5,1]. 

The affine group and Heisenberg group are two 
simple and essential examples of the semidirect product 
groups, (see [9,10]). In Sections 3, we overview these 

cases. Afterwards we try to extend the notion of 
continuous wavelet transform to the semidirect product 
of two locally compact topological groups. 

2. Wavelet Transform on Semidirect  
Product Groups 

Throughout this section we assume that H  and K  
are two locally compact topological groups and K  is 
abelian. Now if there exists a homomorphism h hτ6  

from H  to ( )Aut K  such that ( , ) ( )h x xhτ6  is 

continuous from H K×  into K, then H K×  under 
operations: 

( , ).( , ) ( , . ( ))hh x h x hh x xτ′ ′ ′ ′=  

1
1 1 1( , ) ( , ( )),

h
h x h xτ −

− − −=  

is a locally compact topological group with the product 
topology. This group, denoted by H Kτ× , is called the 
semidirect product of H  and K , respectively. Take 
G H Kτ= × . If ( )d h dhµ =  and ( )d x dxν =  are the 
left Haar measures on H  and K , respectively and H∆  
is the modular function of H , then ( )h dhdxδ  is the 
left Haar measure of G where : (0, )Hδ → +∞  is a 
monomorphism such that:  

( )( ) ( ) ( ) ,h
K K

f x dx h f x dxτ δ=∫ ∫D  

 00, ( ).h H f C K∀ ∈ ∀ ∈  

Also ( , ) ( ) ( )Hh x h hδ∆ = ∆  is the modular 
function of G, (for more details see [12]). 

 
Lemma 2.1.  With the notations as above, the action of 
G on K which is given by , ( ) ( ).h x hT y y xτ=  for 
( , ) ,h x G∈  induces a unitary representation (is called 
the quasi regular representation) ρ  of G on 2 ( )L K , 
that is defined by  

1
2 1 2

,( , ) ( ) ( ) ( ( )) ( ).h xh x f y h f T y f L Kρ δ −= ∀ ∈  

 
Proof.  First note that 1

1 1
, ( ) ( )h x h

T y yxτ −
− −= . So we 

have 
1
2

1
1( , ) ( ) ( ) ( ( ))

h
h x f y h f yxρ δ τ −

−=  for all 
2 ( ).f L K∈  Thus 
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1
2

1
2

1 1
2 2

1 1
2 1

1
2

1 1
1 2 2

1
2

1 11 2

1 1 2 2

1
1 1 2 2

1 1
1 2 1 2

1 1
1 2 1 2( )

1 1
1 2 1 2( )

1 1 2 2

( , ) ( , ) ( )

( , )( ( ) ( ( )))

( ) . ( ) ( ( ( ) ))

( ) ( ( ). ( ))

( ) ( ( . ( ) ))

(( , )( , )) ( ).

h

h h

h h h

hh h

h x h x f y

h x h f yx

h h f yx x

h h f x y x

h h f x x y

h x h x f y

ρ ρ

ρ δ τ

δ δ τ τ

δ τ τ

δ τ τ

ρ

−

− −

− −

−

−

− −

− −

− −

=

=

=

=

=

 

Moreover 

1

2 2

2

21

2 21

2

2

( , ) ( , ) ( )

( ) ( ( ))

( ) ( )

.

K

h
K

K K

h x f h x f y dy

h f yx dy

f yx dy f y dy

f

ρ ρ

δ τ −
−

−

=

=

= =

=

∫

∫

∫ ∫

 

 � 
Definition 2.2.  A nonzero vector ψ  in 2 ( )L K  is 
called a wavelet (or equivalently an admissible vector 
for ρ ) if 2, (.,.) ( )f L Gρ ψ< >∈  for all 2 ( )f L K∈ . 

When K is a LCA group, the identity 
ˆ ˆˆ ( , ) ( ( , ) )h x f h x fρ ρ=  defines the Fourier transform 

of the quasi regular representation ρ . Moreover for any 
2 ( )f L K∈  we have: 

1
2

1

1
2

1

1
2

1

ˆ ˆˆ ( , ) ( ) ( ( , ) )( )

( , ) ( ) ( )

( ) ( ( )). ( )

( ) ( ) ( ( )). ( )

ˆ( ) ( )( )( ).

K

h
K

h
K

h

h x f h x f

h x f y y dy

h f y yx dy

h x f y y dy

h x f

ρ γ ρ γ

ρ γ

δ τ γ

δ γ τ γ

δ γ τ γ

−

−

−

=

=

=

=

=

∫

∫

∫

D

 

Now for wavelet vector ψ  and 2 ( )f L K∈ , we 
define the continuous wavelet transform of f  by 

1
2

1
1

( , ) , ( , )

( ) ( ) ( ( )) .
hK

W f h x f h x

h f y yx dy

ψ ρ ψ

δ ψ τ −
−

=<

>= ∫
 

It is easy to see that ( , ) ( , )h x W f h xψ6  is a 
continuous mapping on G. Also W ψ  intertwines ρ  and 
the left regular representation L  of G, i.e. 

( , ) ( , )W h x L h x Wψ ψρ =  for all ( , )h x G∈ . Now we 
are ready to obtain a concrete form for admissibility of 
ψ  in the following theorem; 
 
Theorem 2.3.  Let ρ  be the quasi regular 
representation of G H Kτ= ×  and 2, ( )f L Kψ ∈ . 

i)  If ψ  is a wavelet vector and γd  is the Haar 

measure of ˆ ,K  then 
1
2

1

ˆ

ˆ ˆ( , ) ( ) ( ).( )( ) ( ) .
h

K

W f h x h f x dψ δ γ ψ τ γ γ γ−= ∫ D  

ii)  ψ  is a wavelet vector if 2 :Cψ =  
2ˆ ( )h

H

dhψ γ τ < ∞∫ D . Moreover, in this case 

22
W f C fψ ψ= . 

 
Proof.  (i) Applying the Plancherel theorem for 

2 ( )f L K∈  we have: 

1
2

1

ˆ

( , ) , ( , )

ˆ ˆ( ) ( ).( )( ) ( ) .
h

K

W f h x f h x

h f x d

ψ ρ ψ

δ γ ψ τ γ γ γ−

=<

>= ∫ D
 

(ii)  If we define 1( )
h

F f ψ τ −
•= ∗ D  where 

1( ) ( )g x g x• −=  and ˆ ˆ( )g g• =  for any 1 ( )g L K∈ . 

Then 1
1ˆ ˆˆ ˆ.( ) ( )

h
F f L Kψ τ −= ∈D . (see Proposition 

4.13 of [4]). Also by Theorem 4.32 of [4] we obtain 

ˆ

ˆ( ) ( ) ( )
K

F x F x dγ γ γ= ∫ . Hence for any 2 ( )f L K∈  

we have: 

1

1

2

ˆ ˆ

ˆ ˆ

( , )

( , ) ( , )

ˆ ˆ ˆ( ) ( ).( )( ) ( ).

ˆ( )( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( )

K

K

h
K K K

h

K K K

W f h x dx

W f h x W f h x dx

h f f

x x d d dx

h F x F x d d dx

ψ

ψ ψ

δ γ ψ τ γ ω

ψ τ ω γ ω γ ω

δ γ γ ω ω γ ω

−

−

=

=

=

∫

∫

∫ ∫ ∫

∫ ∫ ∫

D

D
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1

2

2

ˆ

2 2

ˆ

( ) ( )

ˆ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) .

K

K

h
K

h F x dx

h F d

h f d

δ

δ γ γ

δ γ ψ τ γ γ−

=

=

=

∫

∫

∫ D

 

A straightforward calculation gives: 

1
1 2ˆ ˆ( )( ) ( ) ( ), ( ).hh

f h f f L Kτ γ δ γ τ−
−= ∀ ∈D D  (3) 

So that; 

1

1

2 2

2

2

2 2
2

ˆ

2 2

ˆ

22
2

( , ) ( )

( ) ( , )

ˆ ˆ( ) ( ) . ( )( )

ˆ ˆ( ) ( )( )

.

H K

H K

h
H K

h
HK

W f W f h x h dxdh

h W f h x dxdh

h f d dh

f dhd

C f

τ

ψ ψ

ψ

ψ

δ

δ

δ γ ψ τ γ γ

γ ψ τ γ γ

−

−

×

=

=

=

=

=

∫

∫ ∫

∫ ∫

∫ ∫

D

D

 

 � 
To obtain an irreducible subrepresentation of ρ , we 

define an action from H  on K̂  by ( , ) hh γ γ τ6 D . 
This action plays an essential role in our work. In what 
follow, we consider only this action on K̂ , and the 
Haar measure of K̂  is dual of the Haar measure of K . 
 
Notation 2.4.  For any measurable subset A  of K̂  with 
positive measure, put 

2 2 ˆ( ) { ( ) ; ( ) }.AL K f L K Supp f A= ∈ ⊆  

It is easy to show that 2 ( )AL K  is a closed subspace 
of 2 ( )L K  and is invariant under translation. Now we 
are going to show the converse. 
 
Lemma 2.5.  Let G  be a LCA group and N  a closed 
subspace of 2 ( )L G . For a measurable function h  let 

hM  be the multiplication operator by h . If P  is an 
orthogonal projection onto N  such that h hPM M P=  
for all bounded measurable function h , then 

A
P M χ=  

for some measurable subset A  of G . 
Proof.  Choose a bounded function 2 ( )h L G∈  such 

that ( ) 0h x >  for all x , and define ( )( )
( )( ) Ph x

h xxφ = . 

Then 
E E

PM h M M hχ φ χ=  for all measurable sets E  

having finite measure. Thus the identity P M φ=  
follows from the fact that linear combinations of 

E
M hχ  is dense in 2 ( )L G . On the other hand P  is an 

orthogonal projection and hence 
A

P M χ=  for some 

measurable set A  of G  with positive measure. � 
 
Theorem 2.6.  i)  Translation invariant closed 
subspaces of 2 ( )L K  are precisely 2 ( )AL K , for 

measurable subsets A of K̂ . 
ii)  If A  is a measurable invariant set in K̂ , Then 

2 ( )AL K  is ρ − invariant. (so in this case the restriction 
ρ  on 2 ( )AL K , denoted by Aρ , is a subrepresentation 
of ρ ). 
 
Proof.  (i) Let ˆN M= , where M  is a translation 
invariant closed subspace of 2 ( )L K , then N  is 

invariant under the operators ˆ ˆ( )xf L f6 , for all 
x K∈ . Moreover if 1 ( )h L K∈  then  

1

ˆ ˆ ˆ( ). ( ) ( ) ( ) ( )

ˆ( )( )( ) .

K

x
K

h f h x x f dx

h x L f dx

γ γ γ γ

γ−

=

=

∫

∫
 

Now by Theorem 3.12 of [4] every multiplication 
operator 2 2

ˆ
ˆ ˆ: ( ) ( )

h
M L K L K→  where 1 ( )h L K∈  

can be weakly approximated by a finite linear 
combination of the operators ˆ ˆ( )xf L f6 , and so N  
is invariant under 

ĥ
M  for all 1 ( )h L K∈ . By 

continuity of Fourier transform, N  is invariant under 

hM  for all 0
ˆ( )h C K∈ . Hence by the approximation 

theory, N  is invariant under hM  for all bounded and 

measurable functions h . So by lemma 2.5, with ˆG K=  
we have 2{ . ; ( )}AN f f L Kχ= ∈  for some 

measurable set A of K̂  with positive measure. Thus 
2 ( )AM L K= . (ii) follows immediately from (3). � 

 
Definition 2.7.  An invariant measurable subset A of 
K̂  with positive measure is called ergodic if every 
invariant subset of A is null or conull. 

Recall that ergodicity can be defined for actions on 
measure spaces and there is a well-known fact related to 
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existence of irreducible subrepresentations. In fact 
ergodicity of A and Theorem 2.7 guarantee that there 
isn't any nontrivial invariant closed subspace of 

2 ( )AL K  under representation Aρ  and so it is 
irreducible. Hence we have proved the following result. 
 
Corollary 2.8.  A nonzero closed subspace M  of 

2 ( )AL K  is invariant under the representation ρ  if and 
only if 2 ( )AM L K=  for some measurable invariant 

subset A of K̂  with positive measure. Moreover the 
subrepresentation Aρ  is irreducible if A  is ergodic. 

Now we have an irreducible representation and the 
next theorem shows when an admissible vector exists. 
This vector will be a wavelet and so we can define 
continuous wavelet transform. 

By the orbit of γ  we mean the ergodic set 
{ ; }hO h Hγ γ τ= ∈D . An ergodic set cannot contain 

two disjoint orbits with positive measure. So if A  is 
ergodic such that O γ  has positive measure for some 

Aγ ∈ , then A O γ=  a.e. Now we can summarize some 
results in the following theorem: 
 
Theorem 2.9.  Let G H Kτ= ×  be the semidirect 

product of H  and K , also let ˆA K⊆  be an ergodic 
set with positive measure such that A O γ=  a.e. for 
some γ . Then: 

i)  The representation Aρ  is square integrable if 
H γ  (the stabilizer of γ ) is compact. 

ii)  2 ( )AL Kψ ∈  is admissible if ˆ ( )hh ψ ω τ6 D  is 
in 2 ( )L H  for almost all Aω∈ . 
 
Proof.  (i) By Corollary 2.8 the subrepresentation Aρ  is 
irreducible. Moreover the Fourier transform from 

2 ( )L K  onto 2 ˆ( )L K  intertwines Aρ  with 
0

G

GInd Iγ  

where I  is the identity operator and ( , )I h xγ  
( )x Iγ=  is a representation on subgroup 0G =  

.H Kγ
τ×  Now since ( ) 0Aµ > , by Theorem 2 of [2] 

the representation Aρ  is square integrable if and only if 
I  is square integrable or equivalently the subgroup 
H γ  is compact. 

(ii) For any Aω∈  we define ( ) :F ω =  
2ˆ ( )a

H

daψ ω τ∫ D , then 

2ˆ( ) ( )h h a
H

F daω τ ψ ω τ τ= ∫D D D
 

2ˆ ( ) ( ).ha
H

da Fψ ω τ ω= =∫ D  

Hence F  is constant on A . So there is a constant 
2Cψ ≤ ∞  such that  

2 2ˆ ( ) . . .a
H

da C a e on Aψψ ω τ =∫ D  

Now Theorem 2.3 completes the proof. � 
 
Remark 2.10.  Theorem 2.9(ii) gives a necessary and 
sufficient condition for the existence of admissible 
(wavelet) vectors, and if 2 ( )AL Kψ ∈  is a wavelet then 
we can rewrite the reproducing formula (1): 

, ( , ) ( , ) ( )
G

f h x h x h dhdx C fψρ ψ ρ ψ δ< > =∫  

(interpreted in the weak sense) for all 2 ( ).Af L K∈  The 
direct construction of admissible vectors will be 
difficult, in fact these are not compactly supported in 
general. Although for a square integrable repre-
sentation on unimodular groups every vector is 
admissible (Example3.4), see also Theorem 7.29 of [7]. 

3. Applications and Examples 

We present a list of examples to illustrate when the 
quasi regular representation has a square integrable 
subrepresentation and how our result can be applied. 
 
Example 3.1.  Affine groups 

Assume that ( \{0})G τ= ×\ \  is a class of Affine 
groups such that homomorphism hh τ6  from \{0}\  
onto ( )Aut R  is defined by ( )h x hxτ = . Then 

1( )h hδ −=  and the quasi regular representation ρ  is 

given by 
1

2( , ) ( ) ( )y x
hh x f y h fρ

− −= , for all 
2 ( )f L∈ \ . Moreover 2 ( )Lψ ∈ \  is a wavelet vector 

if 2

2, ( , ) dhdx
G h

f h xρ ψ< > < ∞∫  or equivalently 
2ˆ ( )2

\{ 0 }

h

h
C dhψ

ψ = < ∞∫
\

.  

In this case \̂  is an ergodic sets in itself, hence 
Corollary 2.8 implies that the representation ρ  is 

irreducible. Also for any nonzero ˆy ∈\  the stabilizer 
of y  is compact and the orbit of y  has positive 
measure, hence ρ  is square integrable. Furthermore if 
we replace \{0}\  with +\  then ρ  is not irreducible, 
since 2

1
( )AL \  and 2

2
( )AL \  are invariant closed 



J. Sci. I. R. Iran Arefijamaal and Kamyabi-Gol Vol. 18  No. 2  Spring 2007 

165 

subspaces of 2 ( )L \  where 1 [0, )A = +∞  and 

2 ( ,0]A = −∞ . But in this case it can be similarly shown 
that the subrepresentations 

1Aρ  and 
2Aρ  are square 

integrable [11]. 
 
Example 3.2.  Motion group 

For any ( , )h SO n∈ \  assume that hτ , an 
automorphism on n\ , is defined by ( )h x hxτ = , then 
the semidirect product ( , ) nG SO n τ= ×\ \  is 
isomorphic to the group of motion of the n -
dimensional Euclidean space. It is easy to see that for 
every ˆ( )ny ∈ \  the orbit yO  is a null set and there 

exists no ergodic subset in ˆ( )n\ , so the quasi regular 
representation ρ  doesn't have any such irreducible 
subrepresentation. However, in this case invariant 
subsets of ˆ( )n\  exist, and so ρ  have reducible 
subrepresentations. Laugesen in [14] showed that the 
quasi regular representation on nH τ× \  where H  is a 
compact group, is not square integrable. 
 
Example 3.3. 

Let {0}H τ= ×\ \\  be a type of Affine group, one 
can define the semidirect product 2G H τ= × \  where 
automorphism ( , )a bτ  on 2\  is defined by 

( , ) ( , ) ( , )a b x y ax bx yτ = + . Moreover for any 
2

1 2
ˆ( , ) ( )γ γ γ= ∈ \  we have:  

1 2 ( , ) 1 2

1 1 2 1 2

1

1

{( , ) ; ( , ) ( , )}

{( , ) ; ( , ) ( , )}

for 0  

{(1,0)} for 0.

a bH a b H

a b H a b

H

γ γ γ τ γ γ

γ γ γ γ γ

γ

γ

= ∈ =

= ∈ + =

⎧ =
⎪= ⎨
⎪ ≠⎩

D

 

Also  

{ }1 2 ( , )

1

1

( , ) ; ( , )

{ } for 0

( \{0} ) for 0.

a bO a b Hγ γ γ τ

γ γ

γ

= ∈

=⎧⎪= ⎨
× ≠⎪⎩

D

\ \

 

Thus H γ  is compact and O γ  has positive measure 

a.e. 2 ˆ( )γ ∈ \ , and so for almost all 2 ˆ( )γ ∈ \  the 
subrepresentations associated to γ  are square 
integrable. 

Example 3.4.  Heisenberg group 
Let ˆ( ) ( )n n nH τ= × ×\ \ \ T  be the Heisenberg 

group on n\ , when the continuous homomorphism 

xx τ6  from n\  into ˆ(( ) )nAut ×\ T  is defined by 
2 .( , ) ( , )ix y

x y y e πτ ξ ξ= . This group is unimodular 
(see [11]) and a type of the quasi regular representation 
of ( )nH \  on 2 ( )nL \  is given by  

2 ( )( , , ) ( ) ( ).ib x aa b t f x te f x aππ −= −  

In [11] it is directly shown that π  is square 
integrable and every 2 ( )ng L∈ \  is admissible. To see 
how our machinery works, first we recall that the dual 
group of ˆ( )n ×\ T  is isomorphic with n ×\ Z , hence 
for any ( , ) \{0}ny m ∈ ×\ Z  we have:  

( , ) { ; ( , )

( , )} { ; }

{(0,0,...,0)}

n y m n
x

n

x y m

y m x y mx y

τ= ∈

= = ∈ + =

=

\ \ D

\  

( , ) {( , ) ; }

{( , ) ; }

{ }

n
y m x

n

n

O y m x

y mx m x

m

τ= ∈

= + ∈

= ×

D \

\

\

 

So the stabilizers are compact and the orbits have 
positive measure a.e. on n ×\ Z . Now fix m and put 

{ }nA m= ×\  then by Theorem 2.9 Aρ  is square 

integrable and for every 2 ˆ(( ) )n
ALψ ∈ ×\ T  we have:  

2

2 21
2

ˆ (( , ) )

ˆ ( , )

n

n

x

m

C y m dx

y mx m dx

ψ ψ τ

ψ ψ

=

= + = < ∞

∫

∫

D
R

R

 

i.e. ψ  is an admissible vector by Theorem 2.9, therefore 
we get the same results if we consider every element of 

2 ˆ(( ))nL \  as the element of 2 ˆ(( ) )nL ×\ T  that is 
constant on T . 
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