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Abstract 
Modeling and analysis of future prices has been hot topic 

for economic analysts in recent years. Traditionally, the 
complex movements in the prices are usually taken as random 
or stochastic process. However, they may be produced by a 
deterministic nonlinear process. Accuracy and efficiency of 
economic models in the short period forecasting is strategic and 
crucial for business world. Nonlinear models are efficient 
enough and suitable for short time forecasting. So notable 
attempts is devoted on understanding different economic time 
series’ and nonlinear dynamical models that can fit them.  

In this paper, it is tried to investigate Tehran stock exchange 
index time series. It is assumed. So, the Correlation Dimension 
(CD), the Hurst Exponent, and the Largest Lyapunov Exponent 
(LLE) of the time series are calculated. It is shown that the time 
series corresponding to Tehran stock Exchange index is 
nonlinear. The analyses of the results show enough evidence to 
accept the conjecture of existence chaotic behavior in Tehran 
stock exchange index. 
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1 - Introduction 

Recently many researchers in different fields of behavioral science and 
engineering use nonlinear systems theory for modeling and forecasting. Rich 
behaviors of nonlinear systems are the main reason for this attempt. Using 
this theory in economics is one of the tough and hardest one. Because one is 
encountered by lack of  long-enough data series, huge amount of noise in 
data sets, lack of strong statistical tests to approve nonlinear phenomena such 
chaos in short data series. However, some researchers such as have tried to 
produce long financial data by testing in artificial financial market (Chen  
(2001)). 

Pervious works on applications of nonlinear theory in business & 
financial world can be categorized in time series’ investigation, improving 
models. Here, we use this theory for time series investigation. 

Since the publications of Frank and Stengos (1989) paper, who found 
evidence of non-linearity in the Rate of Return (RoR) of silver and gold, 
economists are looking for nonlinear models for economic data. Many 
researchers, such as Scheinkman & LeBaron (1989 a,b), Blank (1991), Hsieh 
(1991), DeCoster (1992), Yang and Brorsen (1993), Fang (1994), Kohzadi 
(1995), Panas, E. & Ninni, V.(2000), successfully found strong evidence of 
nonlinearities in economic time series. "The effort devoted to study time 
series reflects the fact that nonlinearities convey information about the 
structure of the series under study". (Panas, E. and Ninni, V., 2000).  

There are several tests for investigating nonlinear behaviors of time 
series. We use the following tests to investigate Tehran stock exchange 
index: Hurst Exponent, Correlation Dimension (CD) and Largest Lyapunov 
Exponent (LLE). 

Hurst exponent can distinguish between stochastic and deterministic 
data. Correlation Dimension can find embedding dimension and indicate as a 
measure for the strangeness of an attracter. Largest Lyapunov Exponent is 
suitable for testing of convergence or divergence of trajectories in phase 
space, and calculating the information memory. 

Our main data is daily Rate of Return (RoR) on main index. However, 
to have better understanding of time series behavior we also analyze the 
below data Tehran stock exchange main index, Daily RoR of main index, 
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weekly RoR of main index, Monthly RoR of main index, Shuffle data of  
index, Residue of main index RoR. 

To compute LLE, we use Wolf algorithm (1985). For calculating, CD, 
we use Grassberger and Procaccia method (1983). In Sections 2 to 4 Hurst 
exponent CD, and (LLE) are discussed respectively. In Section 5, the results 
of analysis on Tehran stock exchange index are presented. 

Since most of the above computations are based on computer, 
developing some toolkits to facilitate the related cumbersome calculations is 
useful. Users may change desired variables and monitor their effects quickly. 
These toolkits, which offer many graphical facilities, gives the user the 
capability to monitor and control the key parameters of the time series such 
as the sample number. Hence, a toolkit in Matlab is developed to facilite the 
calculations. 
 
2 – The Hurst Exponent  

H.E. Hurst is responsible for a measure of predictability of time series 
that has interesting characteristics. The exponent is derived using so-called 
R/S analysis. Given a time series X containing a number of points, n, and 
choosing an integer divisor p where for convenience: 10 <= p < n/2, the data 
can be divided into n/p blocks. For each block the average value is 
calculated, then the maximum range of each block and the standard deviation 
of each block. The value (range)/(standard deviation) is calculated for each 
block and then averaged over the blocks. This average value R/S is related to 
the Hurst exponent by the following formula: 

 
H

2
pS/R ⎟
⎠
⎞

⎜
⎝
⎛=  

Where H is the Hurst exponent. In order to gain a more reliable estimate 
the value of R/S is calculated for all the possible values of p, and the 
resulting tuples and logged and a linear regression is performed on them. It is 
the gradient of the regression line that is used as the Hurst exponent. Hurst 
exponent values range between 0 and 1. A value of 0.5 indicates a true 
random walk, a value 0.5 < H < 1 indicates so called persistent behavior, in 
the one can expect with increasing certainty as the value moves towards one 
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the whatever direction of change has been current will continue. A straight 
line with non zero gradient would have a Hurst exponent of 1. Similarly, 
values 0 < H < 0.5 indicates anti-persistent behavior, in that one can expect 
that whatever direction of change is current is unlikely to continue. At the 
limit of 0 the time series must change direction every sample. 
 
3 – The Correlation Dimension (CD)  

There are many ways to define a dimension for an attractor. It depends 
on average weight of the regions of the attractor. Correlation Dimension 
(CD), which is very easy to calculate, gives more reliable results than the 
other dimensions. CD can indicate as a measure for the strangeness of the 
attractor, because it includes information about formation as well as final 
appearance of the attractor. (Sprott, 2003)  

Correlation dimension can be calculated using the distances between 
each pair of points in the set of N number of points, (Grassberger and 
Procaccia 1983) 

 
.XX)j,i(s ji=  

 
A correlation function, C(r), is then calculated using, 
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C(r) has been found to follow a power law: 
 

Dr k)r(C =  
 
Therefore, we can find Dcorr with estimation techniques derived from the 

formula:  
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C(r) can be written in a more mathematical form as 
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To get sure of chaotic structure it is better to apply CD on residue value 
of Auto Regression model (Brock W., Sayers C, 1998) and on shuffle values 
(Scheinkman j., Le Baron B, 1989). If CD of residues mature on point and it 
is stable, it is a good evidence for our pervious job. If CD of shuffle values is 
more than CD of normal data, it is evidence that the pervious results are ok.  

An important point in financial time series applications is the number of 
data points required for good estimation of the dimension. The question of 
the length of the scalar time series has been a major topic of debate (Wolf A. 
1985) and Ruelle (1981) suggest a minimal data length of   CD10n ≥ .  
 
4 – The Largest Lyapunov Exponent – (LLE)  

The LLE have additional features for detecting deterministic behavior. 
These exponents measure the exponential divergence and convergence of 
nearby orbits. LLE may be calculated in two cases: First when there is a 
mathematical differential equations for the system, and second case when an 
experimental data estimation of the system exists. 

For the second case Alan Wolf and his colleges (Wolf, A., Swift, J.B., 
Swineey, H.L. and Vastano, J.A. 1985) present an algorithms to estimate the 
positive Lyapunov exponents from an experimental data set or a time series. 
Their method monitors the long-term growth rate of small volume elements 
in an attractor. Here, the wolf is method is used to estimate LLE. 

First, we make a [m*(N-m+1)] dimension matrix from N scalar data, 
then we find pairs vectors that satisfy: 

 

Exx)j,i;m(r ji0 <−=  
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E is a small positive value. By the growth of time length we can 
calculate )j,i;m(rn using the below equation:  

 

njnin xxjimr ++ −=),;(
 

Then we calculate the divergence of neighbor points as: 
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If dn>1 it means by increasing the time length n, the neighbor points of 
m dimension phase space will diverge Having dn the equation for calculating 
LLE is: 

 

∑−
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Positive LLE is a strong evidence of deterministic chaos. In addition, it 
shows that nearby points of m-dimension phase space attractor will diverge. 
Therefore, past information will lose its effect on future after a while in m 

dimension. This memory period is equal to  
LLE

1T ≤  for each dimension.   

Like other tests, LLE needs enough data points and it is sensitive to 
noise. Wolf mentions three reasons for enough length of data series: 

 a finite amount of attractor data can only define finite length scales 
 the stretching and folding that is the chaotic element of a flow may occur 
on a scale small compared to the extent of the attractor 

 Noise defines a length scale below which separations are meaningless.  
 
5 -Data analysis  

The data set consists of Tehran stock exchange index for the period 
22/11/1998 to 28/02/2006. This series is obtained from Tehran stock 
database web site. 
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Before analysis of the above data, the growth of time trend and the 
noise should be considered. The logarithm of data is used to remove 
systematic calendar and trend effects. There are plenty of noise reduction and 
filtering techniques but we did not use them in this research. 

First, we calculate RoR of daily, weekly and monthly data, which are 
shown in Figure 2, Figure 3, and Figure 4. 

We test for stationary using the augmented Dickey-Fuller (ADF) test 
statistic. The ADF test statistic is -15 and it is less than the critical values, 
which are -3, -2, -2. It means RoR series is stationary.  
 
The Hurst Exponent of Tehran Stock Exchange Index 

The Hurst exponent is calculated for weekly and monthly RoR. The 
result of regression for R/S models are shown below: 

Regression of Weekly RoR: y = 0.7646x - 0.1703 R2 = 0.9971 
Regression of Scrambled weekly RoR: y = 0.5751x  R2 = 0.9751 
Regression of Monthly RoR: y = 0.889x - 0.5499  R2 = 0.9931 
Regression of Scrambled Monthly RoR: y = 0.5885x R2 = 0.971 
The results are acceptable and as we see the weekly H=0.76 is less than 

Monthly H=0.88 
Since Hurst exponents are between 0.5 and 1, the time series is 

deterministic. In addition, the long memory effect calculated as: 
Weekly RoR Information memory: day300)1737(NH ==  
Monthly RoR Information memory: day751)1717(NH ==  
It means after 300 and 751 days the current day information loses its 

effect on future trends.  
 
The CD‘s of Tehran Stock Exchange Index 

The correlation dimension for daily, weekly, and monthly data are 
shown in Figures 5 to Figure 7 respectively. It is notable that they are getting 
mature on zero while dimension increases. The results of correlation 
dimension is summarized in Table 1 to Table 3. The CD for weekly and 
monthly data is 2.2 and for daily RoR is 1.6. These values of CD shows 
indication of strangeness of the attractor associated to the time series.  
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The LLE of Tehran Stock Exchange Index  

The result of calculation for  LLE on Daily, Weekly and monthly data 
are shown in Table 4, to Table 6 and Figure 8, to Figure 14. LLE vs. T in 
each dimension is also shown. It may be found that longer RoR, smaller 
dimension may be achieved. 

In Tables 4, 5, 6 information memory is calculated for each dimension. 
“T” the inverse of LEE shows how long today information can effect on 
future information However, keep in mind during T period the amount of 
information effect decrease till end of period. In Figure 21, LLE for 
dimension 26 of daily RoR is shown.  

Based on positive evidence of CD and LLE one may conclude that the 
Tehran stock exchange index is chaotic and there are strong evidences of 
deterministic chaos.   

 
Table 1: Daily Correlation Dimension 

Dimension 5 10 15 20 

CD 0.371369 0.812866 1.263043 1.690559 
 

Table 2: Weekly Correlation Dimension 

Dimension 5 10 15 16 17 18 19 20 

CD 0.77203 1.3810295 1.953232 2.0287676 2.11087 2.287557 Infinity Infinity 

 
Table 3: Monthly Correlation Dimension 

Dimension 5 10 13 14 15 

CD 1.029311 1.683133 1.971164 2.172654 Infinity 
 

Table 4: Largest Lyapunov Exponent and Information Memory for Same 
Dimensions of Daily RoR for Dimension 14 to 30  

Dimension 14 16 18 20 22 24 26 30 

LLE 0.95772 0.31171 0.085148 0.038895 0.02293 0.013579 0.008037 .0011854 

T-day 1 3.2 11.7 25.7 43.61 73.6 124.4 843.5 
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Table 5: Largest Lyapunov Exponent and Information Memory of Weekly RoR 
for Dimension 5 to 15 

Dimension 5 10 15 

LLE 18.68069 0.413131 0.008843 

T- Day  2.420542 113.0889 
 

Table 6: Largest Lyapunov Exponent and Information Memory of Monthly 
RoR for Dimension 5 to 8  

Dimension 5 6 7 8 

LLE 0.353399 0.093252 0.027529 0.005389 

T- Day 2.829664 10.72359 36.32546 185.5509 
 

 

 

 

 

 

 

 

 

 

Figure 1 : Daily Index of Tehran Stock Exchange from 22/11/1998 to 28/2/2006 
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Figure 2 : Daily RoR of Main Index 
 

 

 

 

 

 

 

 

 

 

 
Figure 3 : Weekly RoR of Main index 
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Figure 4 : Monthly RoR of Tehran index 
 

 

 

 

 

 

 

 

 

 

 
Figure 5 : Daily RoR CD Maturity Diagram 
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Figure 6: Weekly RoR Correlation Dimension Maturity Diagram 
 

 

 

 

 

 

 

 

 

 

Figure 7: Monthly RoR Correlation Dimension Maturity Diagram 
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Figure 8: Lyapunov Exponent diagram for Daily RoR 
 
 

 

 

 

 

 

 

 

 

 

Figure 9: Lyapunov Exponent Diagram for Daily RoR -Zoom from Dimension 
24-30 
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Figure 10: Lyapunov Exponent Diagram for Daily RoR - Dimension 24 
 

 

 

 

 

 

 

 

 

 

Figure 11 : Lyapunov Exponent Diagram for Weekly RoR –Dimension 5-15 
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Figure 12: Lyapunov Exponent Diagram for Eeekly RoR - Dimension 15 
 

 

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 13: Lyapunov Exponent diagram for Monthly RoR –dimension 5-8 
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Figure 14: Lyapunov Exponent Diagram for Monthly RoR –Zoom-Dimension 
6-8 

 
Conclusion  

In this paper Tehran stock exchange index is investigated by Hurst 
exponent, correlation dimension and largest Lyapanov exponent. By 
calculating the Hurst exponent and correlation dimension, it may be found 
that time series corresponding to Tehran stock exchange index may be 
considered as nonlinear deterministic series. The LLEs were calculated for 
different dimensions and most of them were positive. It shows an indication 
of chaos in time series.  

It may be concluded that for forecasting in Tehran stock exchange index 
nonlinear and deterministic models could be more reliable, Richness of 
nonlinear models to interpret the behavior of time series could help 
researcher to understand underlying phenomena in the market. Furthermore, 
the assumption of determinism in the market rejects the efficient market 
hypothesis, prevents price manipulation, and reduces stock market 
inefficiency.   
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