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Abstract 

We used Wick’s normal-ordering technique, squeezed creation and 
annihilation operators, and a variation method, to find the eigenvalues of the 
general pure λx2m potential. Numerical results for low-lying energy levels of pure 
quadratic, quartic, sextic, octic and decatic potentials, for different values of λ 
were obtained. Some interesting features of these energy levels are explained. 
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1. Introduction 

Anharmonic oscillators are approximate models to 
describe many phenomena in physics and chemistry. 
The Hamiltonian for an important class of such systems 

may be expressed by 
2 2

2

2 2
m

m

p x xλ+ +∑ , where m  is 

a positive integer and the polynomial represents the 
perturbation potential to the harmonic oscillator. The 
anharmonic oscillators with only one perturbation term 
have been studied extensively in the past [1-5]. They not 
only are tools to explain the molecular vibrational data 
[6,7], but also they are a testing ground for several 
approximation and computational techniques [8,9], that 
can be applied to other problems [10]. If the quadratic 
term is also absent, one is left with the Hamiltonian 

2
2

2
mP x

m
λ+ , with only a one-term potential, which may 

not look like an anharmonic oscillator in the customary 
sense. This potential model has been used to study the 
chaotic systems in recent years [11-14]. Moreover it 
may also be considered the strong coupling limit of the 

Hamiltonian 
2 2

2

2 2
mp x xλ+ + , and thus may be a useful 

tool to compare the results obtained by different 

computational techniques [15-20]. A general solution 
for this problem, for arbitrary values of m  and λ , is 
lacking. Only some special cases, in particular the pure 
quartic oscillator, the case 2m = , has been studied [21-
23]. 

The aim of this work is to obtain a general solution 
for the potential 2mxλ  for arbitrary values of λ  and 
m . Then we shall apply our general results, to obtain 
energy eigenvalues for the pure quadratic, quartic, 
sextic, octic and decatic potentials with several different 
values of λ . 

Considering the Hamiltonian 
2

2

2
mP x

m
λ+ , it seems 

that we are not dealing with an anharmonic oscillator 
here; but we may write 

2 2 2
2( )

2 2 2
mP x xH xλ= + + − + , (1) 

which characterizes a harmonic oscillator, with two 
perturbation terms. However, the first perturbation term 
is not small, and the second one also may not be 
necessarily small, compared to the unperturbed 
Hamiltonian. Therefore, usual perturbation techniques 
may not be applicable here. 

We have developed a method based on Wick’s 
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normal-ordering of the field operators, squeezed states, 
and a variation technique [24], which has been applied 
to different problems by us and others [25,26], with 
success. This method is also well suited to solve the 
problem at hand. We shall give only a brief account of 
this method in Section 2 to prepare the necessary tools 
and relations we need in this work. The reader may 
consult reference [24] for more details. 

We organize our paper as follows. The generalized 
number states and a theorem regarding the Wick’s 
normal-ordered product of the creation and annihilation 
operators are discussed in Section 2. Our approach to 
variation method and the optimal generalized number 
states, which we use to write down the Hamiltonian and 
its matrix elements, are presented in Section 3. Our 
numerical results and discussion are presented in 
Section 4. 

2. Generalized Number States and the Normal 
Ordering of the Operators 

The Hamiltonian 0H  may be given in terms of the 
creation and annihilation operators as follows 

0
1
2

H a a+= + , (2) 

where 

, 1a a+⎡ ⎤ =⎣ ⎦ , (3) 

and 

( )
2

a a
x

++
= . (4) 

We now introduce the generalized number states 
briefly [27-30]. We define the squeezed annihilation and 
creation operators b  and b + , by the following 
transformations 

21

b tba
t

++
=

−
, (5) 

21

b tba
t

+
+ +
=

−
. (6) 

These squeezed operators have the properties 

, 1b b +⎡ ⎤ =⎣ ⎦ , (7) 

and 

0, 0b t = , (8) 

where 

( ) ( ) 2
1

/ 22 40, 1 0t at t e
+

= − , (9) 

is the normalized squeezed vacuum state. The 
generalized number states ,n t , which form a complete 
orthonormal set, are given by 

( )
, 0,

!

n
b

n t t
n

+

= . (10) 

We also write down the Wick’s normal-ordered form 
of the operator ( )2m

b b ++  in which, using the 

commutator (7), all the creation operators stand to the 
left of the annihilation operators [24]  

( )2m
b b ++

( )
( )

2 2
2 2

0 0

2 !
! 2 2 !2 !

m k j jm m k

k
k j

b bm
j m k jk

− −+−

= =

=
− −∑ ∑ . (11) 

This ordered form would help us to set up our matrix 
representation in the next section. 

3. Variational Method and the  
Hamiltonian Matrix 

We write the Hamiltonian H  in the form 

( )
2

21 1
2 4 2

m
a aH a a a a λ

+
+ + ⎛ ⎞+

= + − + + ⎜ ⎟
⎝ ⎠

, (12) 

where, we have used equations (2)and(4) . We may also 
use equations (5,6) and (11) to write the Hamiltonian 
H  in terms of the squeezed operators b  and b + , in a 
Wick’s normal-ordered form. We find 

( ) ( )

( )

( )
( ) ( )

2 2

2 22 2

2 2 2 2

0 0

1 1
4 2

1 1
4 4

2

2 !
,

2 ! ! 2 2 !

m

m m k m k n n
k

k n

H b b

b b b b

m
b b

k n m k n

λ

+

+ ÷

− − −+

= =

+Ω +Ω
= + ∞

Ω Ω

−Ω
+ + − +

Ω Ω

+
Ω

− −∑ ∑

 (13) 

where, the new real parameter 1
1

t
t

−
Ω =

+
 has been 

defined. 
Now, we calculate the expectation value of the 
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Hamiltonian (13) in the squeezed vacuum state 0,Ω ; 
we find 

( ) 0, 0,Hε Ω = Ω Ω =
( )

2

2 !
4 2 !m m

m
m

λΩ
+

Ω
. (14) 

Considering Ω  as a variation parameter, we may 
minimize ( )ε Ω  to find the following equation, which 
provides us with oΩ , the optimal value of Ω  

( )
( )2 2 1

2 !
1 0

2 1 !m m
o

m
m

λ
− +− =
Ω −

. (15) 

We have solved this simple equation for several 
values of m  and λ  numerically. The pertinent data is 
presented in Table 1. 

Having obtained the oΩ  values, we now use 

{ }, on Ω , the optimal orthonormal set, to construct the 

Hamiltonian matrix as follows 

( )

( ) ( )
( ) ( )

( )

( )( )

2 2

0 0

, 2 2 2

, 2

, 2

2

2 ! ! 2 2 2 !
2 ! ! 2 2 ! !

4 2

1
4

1 2 ,

ij m
o

m m k

k
k n

i j m k n

o o
ij

o
i j

i j

H

m j j m k n
k n m k n j n

j

j j

j j

λ

δ

δ

δ

δ

−

= =

+ − −

−

+

=
Ω

+ − −

− − −

Ω Ω⎡ ⎤+ +⎢ ⎥⎣ ⎦

Ω ⎡− −⎣

⎤+ + + ⎦

∑ ∑

 (16) 

where we have used the relation 

( ) ( )
( ) ,

! !
, ,

!
q p

n n p q

n n p q
n t b b n t

n p
δ+

′ − +

− +
′ =

−
, (17) 

which can be proved, using 

( )
!, ,

!
p nb n t n p t

n p
= −

−
, (18) 

and 

( ) ( )!
, ,

!
q n q

b n t n q t
n

+ +
= + . (19) 

The Hamiltonian matrix given by (16) is an infinite 

dimensional one; we truncate the basis to 1n N≤ − , 
and diagonalize the N-dimensional matrix we obtain, to 
calculate the eigenvalues. 

4. Numerical Results and Discussion 

Our numerical results for the quadratic, quartic, 
sextic, octic and decatic potentials, with values of λ  
equal to 0.01, 1  and 100 , are presented in Tables 2 
through 6. We used Matlab® to diagonalize our 
matrices. A few remarks on the properties of the energy 
levels are in order now. 

a) The values obtained for each energy level 
converge fast as N  increases, but the convergence is 
faster for smaller values of m . 

b) For a specific value of m , the energy of each 
level, say the ground state, increases as λ increases. This 
can be explained by the uncertainty principle. In fact, by 
increasing λ , the particle is confined in a smaller 
interval; therefore, xΔ  decreases and pΔ  and EΔ  
increase, and higher ground state energies are required. 
We can also show this mathematically: Using the 
uncertainty criterion 

1xp ≈ , (20) 

we minimize the Hamiltonian 
2

2

2
mpH xλ= + , (21) 

 
 

Table 1.  Ωo values 

λ m Ωo 
0.1 1 0.14142135623731 
 2 1.02874841323592 
 3 1.09050558806661 
 4 1.24344277610831 
 5 1.48649144164618 
1 1 1.41421356237310 
 2 2.00000000000000 
 3 2.29558184499807 
 4 2.61781187492896 
 5 2.95585750501681 
100 1 14.1421356237309 
 2 8.17384740184630 
 3 6.92364066519287 
 4 6.40298854588826 
 5 6.26736854650948 
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Table 2.  Energy eigenvalues for 
2

2
1 2

pH xλ= +  

λ N E0 E1 E2 E3 

0.01 
 
 
 
1 
 
 
 
100 
 
 

10 
30 
50 
 

10 
30 
50 
 

10 
30 
50 

0.07071067811865 
0.07071067811865 
0.07071067811865 

 
0.70710678118655 
0.70710678118655 
0.70710678118655 

 
7.071067811865 
7.071067811865 
7.071067811865 

0.21213203435596 
0.21213203435596 
0.21213203435596 

 
2.12132034355964 
2.12132034355964 
2.12132034355964 

 
21.213203435596 
21.213203435596 
21.213203435596 

0.35355339059327 
0.35355339059327 
0.35355339059327 

 
3.53553390593274 
3.53553390593274 
3.53553390593274 

 
35.355339059327 
35.355339059327 
35.355339059327 

0.49497474683058 
0.49497474683058 
0.49497474683058 

 
4.94974746830584 
4.94974746830584 
4.94974746830583 

 
49.497474683058 
49.497474683058 
49.497474683058 

 
Table 3.  Energy levels for 

2
4

2 2
pH xλ= +  

λ N E0 E1 E2 E3 

0.01 
 
 
 
1 
 
 
 
100 
 
 

10 
30 
50 
 

10 
30 
50 
 

10 
30 
50 

0.14391704489909 
0.14391327691899 
0.14391327691898 

 
0.66803082044435 
0.667986259157 
0.66798625916 

 
3.100775109649 
3.10051756166 
3.1005175615 

0.51569839928336 
0.51569497046968 
0.51569497046967 

 
2.39375845846577 
2.393644016519 
2.39364401648 

 
11.110612198112 
11.11031134003 
11.1103113385 

1.01243909569983 
1.01189389134408 
1.01189389134408 

 
4.69907761771126 
4.696795387828 
4.69679538686 

 
21.830550961077 
21.80059302827 
21.8005930214 

1.58099788524579 
1.58043511784247 
1.58043511784246 

 
7.34618456481051 
7.335729996331 
7.33572999523 

 
34.129854106880 
34.04944255861 
34.0494424322 

 
Table 4.  Energy levels of 

2
6

3 2
pH xλ= +  

λ N E0 E1 E2 E3 

0.01 
 
 
 
1 
 
 
 
100 
 
 

10 
30 
50 
 

10 
30 
50 
 

10 
30 
50 

0.21533492074829 
0.215257383368 
0.21525738244 

 
0.682110583773 
0.6807036816 
0.6807036117 

 
2.157480246480 
2.1525744655 
2.152573825 

0.81588564726505 
0.815787389080 
0.81578738671 

 
2.582604795031 
2.5797472862 
2.5797462294 

 
8.165751386078 
8.1578791456 
8.157873872 

1.70954771636700 
1.706013532460 
1.70601349318 

 
5.437062336587 
5.3948912174 
5.3948883601 

 
17.233254372881 
17.0601536997 
17.060134966 

2.81256162040836 
2.808262366572 
2.80826225625 

 
8.982619063466 
8.8805279747 
8.8805050258 

 
28.398059072183 
28.0827798057 
28.082622757 
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Table 5.  Energy levels for 
2

8
4 2

pH xλ= +  

λ N E0 E1 E2 E3 

0.01 

 

 

 

1 

 

 

 

100 

 

 

10 

30 

50 

 

10 

30 

50 

 

10 

30 

50 

0.281237715134 

0.2802882338 

0.280286871 

 

0.71047070549 

0.704055268 

0.70404885 

 

1.78531670901 

1.768515656 

1.76849086 

1.093396064172 

1.0874457159 

1.087442714 

 

2.74477160886 

2.731591545 

2.73153297 

 

6.89322223007 

6.861470144 

6.86130061 

2.358780746216 

2.3425682962 

2.342533151 

 

6.02910676433 

5.884320286 

5.88417853 

 

15.18041460803 

14.780915594 

14.78039124 

4.038317590703 

3.9656022860 

3.965541208 

 

10.21013306103 

9.961868057 

9.96099591 

 

25.61791690883 

25.023663878 

25.02089224 

 
Table 6.  Energy levels for 

2
10

5 2
pH xλ= +  

λ N E0 E1 E2 E3 

0.01 

 

 

 

1 

 

 

 

100 

 

 

10 

30 

50 

 

10 

30 

50 

 

10 

30 

50 

0.3442095955 

0.338369271 

0.33834961 

 

0.74501564181 

0.72902579 

0.7289539 

 

1.60580303313 

1.57067472 

1.5704848 

1.34671448380 

1.328118262 

1.32800157 

 

2.89611635322 

2.86161666 

2.8610968 

 

6.23844181646 

6.16523646 

6.1640458 

3.00389872942 

2.906120435 

2.90571109 

 

6.56194234442 

6.26143237 

6.2601944 

 

14.1647771159 

13.49043013 

13.4872061 

5.22402896976 

4.999819205 

4.99872180 

 

11.2151993706 

10.77507149 

10.7694829 

 

24.1370250439 

23.21538423 

23.2021484 

 
Table 7.  Energy levels for the Hamiltonian 2 4

6H p x= +  with N = 50 

 E0 E1 E2 E3 

Upper limit by 
Chhajlany et al. 

0.53018104545 1.899836516 3.727848973 5.822372765 

Our results 
 

0.53018104525 1.89983651490 3.72784896899 5.82237275569 

Lower limit by 
Chhajlany et al. 

0.53018085 1.8998356 3.72784675 5.8223685 
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with respect to one of the variables x  or p . We find 

( ) ( )
1

11
,min 1 2

m
mm

mH m m λ− ++≈ + . (22) 

It is apparent from this result that for any positive 
integer value of m , that we are concerned with, the 
function ,minmH  is an increasing function of λ ; in 
agreement with the data. 

c) As λ  decreases, the energy levels are pushed 
together for any specific value of m ; this seems 
reasonable, because one expects a free particle with a 
continuous spectrum, at the 0λ →  limit. 

d) Table 1 shows that for the higher values of m  and 
λ , the oΩ  values deviate from 1  substantially. Now, 

1oΩ =  is realized when 0t =  and it is seen from 
equations (5-6) that this condition transforms the 
squeezed creation and annihilation operators b  and b +  
to the corresponding normal operators, and the squeezed 
number states to the corresponding normal ones. These 
facts then imply that for the small values of λ  and m , 
one obtains good results by using the normal number 
states instead of the squeezed ones. However, for larger 
values of λ  and m , oΩ  departs from the value unity 
considerably and the squeezed number states deviate 
from the normal ones substantially ; therefore, squeezed 
number states yield more accurate results in such cases. 

The value of the ground state energy of the quartic 
oscillator (n = 2), calculated based on other methods, is 

given by 1/ 30.667986259 λ  [15,31] .This result is 
compatible with ours, given in Table 3. 

Finally, Chhajlany et al [32] have obtained numerical 
results for the energy levels of the Hamiltonian 

2 4
6H p x= + , using “auxiliary potential” approach. 

This Hamiltonian is just equivalent to 2H  with λ  and 

m  equal to 1
2

 and 2 , respectively. It is therefore 

appropriate that we calculate the energy eigenvalues for 
this Hamiltonian and compare our results with theirs. 
Both data are presented in Table 7. It is clear that the 
values we have obtained for the levels are within the 
bounds given by Chhajlany et al; hence, the two 
methods are in good agreement for the quartic potential. 

References 
1. Hioe F.T., MacMillen D., and Montroll E.W. Quantum 

theory of anharmonic oscillators: energy levels of a single 
and a pair of coupled oscillators with quartic coupling. 
Phys. Rep., 43: 305-335 (1978). 

2. Jafarpour M., Khalafi G., Latifi A.R., and Ashrafpour M. 

Classical and quantum sextic anharmonic oscillators: 
second-order solutions and the classical limit. Nuovo 
Cimento B, 118(5): 513-523 (2003). 

3. Pathak A. Generalized quantum anharmonic oscillator 
using an operator ordering approach. J. Phys. A: 
Math.Gen., 33: 5607-5613 (2000). 

4. Vinett F. and Čižek J. Upper and lower bounds of the 
ground state energy of anharmonic oscillators using 
renormalized inner projection. J. Math. Phys., 32: 3392-
3404 (1991). 

5. Matamala A.R. and Maldonado C.R. A simple algebraic 
approach to a nonlinear quantum oscillator. Phys. Lett. A, 
308: 319-322 (2003). 

6. Fernandez F.M. and Tipping R.H. Accurate calculation of 
vibrational resonances by perturbation theory. J. Molec. 
Struct. (Theochem), 488: 157-161 (1999). 

7. Bhattacharyya K. and Pathak R.K. Resonances in 
anharmonic oscillators: detection and surprises. Ibid., 
361: 41-47 (1996). 

8. Fernández F.M. and Guardiola R. Accurate eigenvalues 
and eigenfunctions for quantum-mechanical anharmonic 
oscillators. J. Phys. A: Math. Gen., 26: 7169-7180 (1993). 

9. Gómez F.J. and Sesma J. Quantum anharmonic 
oscillators: a new approach. Ibid., 38: 3193-3202 (2005). 

10. Fernández F.M. Perturbation theory with canonical 
transformations. Phys. Rev. A, 45: 1333-1338 (1992). 

11. Tomiya M. and Yoshinaga N. Numerical analysis of level 
statistical properties of two-and three-dimensional 
coupled quartic oscillators. Comput. Phys.Commun., 142: 
82-87 (2001). 

12. Yoshinaga N. and Tomiya M. New approach to level 
statistics of coupled quartic oscillators. Comput. Phys. 
Commun., 142: 88-94 (2001). 

13. Tomiya M. and Yoshinaga N. Spectral statistics of a spin-
½particle in coupled quartic oscillator potentials. Physica 
E, 18: 350-351 (2003). 

14. Tomiya M., Yoshinaga N., Sakamoto S., and Hirai A. A 
large number of higher-energy eigenvalues of a huge 
dimensional matrix for a quantum chaotic study of a 
quartic potential. Comput. Phys. Commun., 169: 313-316 
(2005). 

15. Liverts E.Z. , Mandelzweig V.B., and Tabakin F. 
Analytic calculation of energies and wave functions of 
the quartic and pure quartic oscillators. J. Math. Phys., 
47: 062109 (2006). 

16. Fernandez F.M. Renormalized perturbation series and the 
semiclassical limit of quantum mechanics. J. Math. Phys., 
36(8): 3922-3930 (1995). 

17. Ivanov I.A. Link between the strong coupling and the 
weak-asymptotic perturbation expansions for the quartc 
anharmonic oscillator. J. Phys. A: Math. Gen., 31: 6995-
7003 (1998). 

18. Ivanov I.A. Sextic and octic anharmonic oscillators: 
connection between strong-coupling and weak-coupling 
expansions. Ibid., 31: 5697-5704 (1998). 

19. Ivanov I. Reconstruction of the exact ground state energy 
of the quartic anharmonic oscillator from the coefficients 
of its divergent perturbation expansion. Phys. Rev. A, 54: 
81-86 (1996). 

20. Fernández F.M., Guardiola R., and Ros J. Computer 
algebra and large scale perturbation theory. Comput. 



J. Sci. I. R. Iran Jafarpour and Afshar Vol. 18  No. 1  Winter 2007 

81 

Phys. Commun., 115: 170-182 (1998). 
21. Korsch H.J. and Gluck M. Computing quantum 

eigenvalues made easy. Eur. J. Phys., 23: 413-426 
(2002). 

22. Mathews P.M., Seetharman M., and Raghavan S. Energy 
eigenvalues of quartic oscillators in d ≤ 3 dimensions. J. 
Phys. A: Math. Gen.,15: 103-111 (1982). 

23. Seetharman M., Raghavan S., and Vasan S.S. Analytic 
WKB energy expressions for three-dimensional 
anharmonic oscillators. Ibid., 15: 1537-1547 (1982). 

24. Jafarpour M., Afshar D. Calculation of energy 
eigenvalues for the quantum anharmonic oscillator with a 
polynomial potential. Ibid., 35: 87-92 (2002). 

25. Jafarpour M. and Afshar D. Calculation of energy 
eigenvaues for two-dimensional anharmonic oscillator. 
Nuovo Cimento B, 120 (3): 335-344 (2005). 

26. Van der Straeten E. and Naudts J. The quantum double-

well anharmonic oscillator in an external field. J. Phys. A: 
Math. Gen., 39: 933-940 (2006). 

27. Miller M.M. and Mishkin E.A. Characteristic states of the 
electromagnetic radiation field. Phys. Rev., 152: 1110-
1114 (1966). 

28. Plebanski J. Wave functions of a harmonic oscillator. 
Ibid., 101: 1825-1826 (1956). 

29. Stoler D. Equivalence classes of minimum uncertainty 
packets. Phys. Rev. D, 1: 3217-3219 (1970). 

30. Munoz-Tapia R. Quantum mechanical squeezed state. 
Am. J. Phys., 61(11): 1005-1008 (1993). 

31. Janke W. and Kleinert H. Convergent strong-coupling 
expansions from divergent weak-coupling perturbation 
theory. Phys. Rev. Lett., 75(15): 2787-2791 (1995). 

32. Chhajlany S.C., Letov D.A., and Malnev V.N. Energy 
spectrum of the potential V=ax2 + x4. J. Phys. A: Math. 
Gen., 24: 2731-2741 (1991). 


