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1. Introduction 

The theory of hypergroups was initiated by Dunkl 
[4], Jewett [8] and Spector [21] in the early 1970's and 
has received a good deal of attention from harmonic 
analysts (note that Jewett calls hypergroups ''convos'' in 
his paper [8]). In [16], Pym also considers convolution 
structures which are close to hypergroups. A fairly 
complete history is given in Ross's survey article 
[17,18]. Hypergroups arise in a natural way as a double 
coset space, and the space of conjugacy classes of a 
compact group [17,1]. In particular, locally compact 
groups are hypergroups. Here we follow the method of 
Jewett [8]. It is still unknown if an arbitrary hypergroup 
admits a left Haar measure but all the known examples 
do [8, §5]. In particular, discrete, compact and 
commutative hypergroups possess Haar measures [10]. 

Throughout, K  will denote a hypergroup with a left 
Haar measure λ . Let 1( )L K  denote the hypergroup 
algebra of K , i.e. all Borel measurable functions φ  on 

K  with 1 = | ( ) | ( ) <
K

x d xφ φ λ ∞∫  (with functions 

equal almost everywhere identified), and the multi-
plication defined by 

* ( ) = ( * ) ( ) ( )
K

x x y y d yφ ψ φ ψ λ∫  (see [8, §5.5]). 

Let the second dual 1 **( )L K  ( *= ( )L K∞ ) of 1( )L K  
be equipped with the first Arens product [3]. Then 

1 **( )L K  is a Banach algebra with this product. The 

topological center of 1 **( )L K  is defined by 
1 ** 1 **( ( ) ) = { ( )Z L K m L K∈ : the mapping n mn  

is w*-continuous on 1 **( )L K }. We have shown [9] that 

the topological center of 1 **( )L K  is 1( )L K . This fact 
has been shown by Lau and Losert in [13] for locally 
compact groups (see also [14] and [2]). 

Let ( )lUC K  be the Banach space of all bounded left 
uniformly continuous complex-valued functions on K  
(see Section 2 for definition) and *( )lUC K  be its dual 
Banach space. Then there is a natural multiplication on 

*( )lUC K  under which it is a Banach algebra. More 
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specifically, for *, ( )lm n UC K∈ , ( )lf UC K∈ , and 
x K∈ , 

, = ,mn f m nf〈 〉 〈 〉  where ( ) = , xnf x n f〈 〉 . 

This product is, in fact, the restriction of the first 
Arens product on 1 **( )L K  to *( )lUC K , which will be 
proved in Lemma 3.1. The topological center of 

*( )lUC K  is defined by 
* *( ( ) ) = { ( )l lZ UC K m UC K∈ : the mapping 

n mn  is w*-continuous on *( )lUC K }. Note that 

when K  is commutative, then *( ( ) )lZ UC K  is 

precisely the algebraic center of *( )lUC K . For a locally 
compact group G , Lau in [12] has shown that 

*( ( ) )lZ UC G  is ( )M G , the algebra of bounded regular 
Borel measures on G . However the method of his 
proof cannot be applied to hypergroups in general. The 
purpose of this paper is to establish these results for 
hypergroups. Our proof also provides a new proof of 
Lau's result [12, Theorem 1] in the group case. 

This paper is organized as follows: 
Section 2 consists of some notations and preliminary 

results that we need in the sequel. The technical Lemma 
2.7 in this section plays a key role in proving our main 
result (Theorem 3.11). In Section 3, we shall prove that 
the topological center of *( )lUC K  is ( )M K . The 
results of this section generalize the corresponding ones 
for locally compact groups [12]. 

2. Preliminaries and Some Technical Lemmas 

The notations used in this paper are those of [8] with 
the following exceptions: 

The mapping x x→  denotes the involution on the 
hypergroup K , xδ  the Dirac measure concentrated at 
x  ( x K∈ ), and 1X  the characteristic function of the 
non-empty set .X K⊆  For C K⊆  and y K∈ , 

*C y  denotes the subset *{ }C y  of K . 
 

Lemma 2.1.  Let K be a locally compact non-compact 
hypergroup. Then there exists a family { : }iC i I∈  of 
compact subsets of K, and ,i iy z K∈ , for each i I∈  

such that iC  (the interior of iC ) is non-empty, 

=i I iC K∈∪ , { : }iC i I∈  is closed under finite 
unions, and 

(a)  the families { * : }i iC y i I∈  and { *i iC z : 

}i I∈  are pairwise disjoint. 
(b)  * * * * =i i j p p qC y y C z z∩ ∅ , i j≠  and 

p q≠ , , , , .i j p q I∈  
Proof.  See [9, Lemma 2.1]. □ 

For a Borel function f  on K  and x K∈ , x f  
denotes the left translation 

( ) = ( * ) = ( ) ( * )( ),x x y
K

f y f x y f t d tδ δ∫  

and xf  is the right translation 

( ) = ( * ) = ( ) ( * )( ),x y x
K

f y f y x f t d tδ δ∫  

if the integrals exist. We write *x y f  and *x yf  for 

( )y x f  and ( )y xf , respectively. 

The function f  is given by ( ) = ( )f x f x . The 

integral ( )d xλ∫…  is often denoted by .dx∫…  

Let ( ( ), . )p
pL K , 1 p≤ ≤ ∞ , denote the usual pL  

spaces on K  [8, §6.2]. Then ( )L K∞  is a commutative 
Banach algebra with pointwise multiplication and the 
essential supremum norm . ∞ , and moreover, 

1 *( ) = ( )L K L K∞  [8, §6.2]. We say that ( )X L K∞⊆  is 
translation invariant if x f X∈  and xf X∈  for all 

,f X∈  ;x K∈  also X  is topologically translation 
invariant if * f Xφ ∈  and *f Xφ ∈  for all f X∈ , 

1 1( ) = { ( )P K L Kφ φ∈ ∈ : 0φ ≥ , 1= 1}φ . 
In addition, we use the following notations: 

00 ( ) :C K  the set of continuous functions with 
compact supports on K . 

( ) :C K  the set of bounded continuous functions on 
K . 

( ) = { ( ) :l xUC K f C K x f∈  is continuous from 
K into ( ( ), . )}C K ∞ . 

( ) = { ( ) :r xUC K f C K x f∈  is continuous from 
K into ( ( ), . )}C K ∞ . 

It is known that ( ) = { ( )lUC K f C K∈ : xx f  is 
continuous from K into C(K) with the weak-topology} 
[20, Theorem 4.2.2, p. 88]. 

Each of the spaces ( )lUC K  and ( )rUC K  is a 
normed closed, conjugate closed, translation invariant 
and topologically translation invariant subspace of 

( )C K  containing the constant functions and 0 ( )C K  
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[19, Lemma 2.2]. Furthermore 
(i)  1 1( ) = ( )* ( ) = ( )* ( )l lUC K L K UC K L K L K∞  

[19, Lemma 2.2] 
(ii)  1 1( ) = ( )* ( ) = ( )* ( )r lUC K UC K L K L K L K∞  

[19, Lemma 2.2]. 
Note that ( )lUC K  is not an algebra in general [19, 

Remark 2.3(b)]. 
For 1( ),L Kφ ∈  we write ( ) = ( ) ( )x x xφ φΔ  where 

Δ  is the modular function on K ; then 1= .φ φ  If 

( )pf L K∈ , 1 p≤ ≤ ∞ , x K∈ , then x pf f≤ , 

and this is in general not an isometry [8, §3.3]. The 
mapping xx f  is continuous from K  to 

( ( ), . )p
pL K , 1 <p≤ ∞ , [8, 2.2B and 5.4H]. 

It is easy to show that 1( )L K  has a bounded 

approximate identity (B.A.I) 00{ : } ( )ie i I C K+∈ ⊆  such 
that = 1ie  (see [19, Lemma 2.1]). 

For any Banach space X , we denote its first and 
second dual by *X  and **X . Let A  be a Banach 
algebra. For any *f A∈  and ,a A∈  we may define a 
linear functional fa  on A  by , = , , ( ).fa b f ab b A〈 〉 〈 〉 ∈  

One can check that *fa A∈  and fa f a≤ . Now 

for **n A∈ , we may define *nf A∈  by ,nf a〈 〉  = 
,n fa〈 〉 ; clearly we have nf n f≤ . Next for 

**m A∈ , define **mn A∈  by , = , .mn f m nf〈 〉 〈 〉  We 
have mn m n≤ , and **A  becomes a Banach 
algebra with the multiplication ,mn  just defined, 
referred to as the first Arens product. There is another 
multiplication on **A , called the second Arens product, 
which is denoted by m n  and defined successively as 
follows: 

, = , ,m n f n fm〈 〉 〈 〉  where , = , ,fm a m af〈 〉 〈 〉  
,af b〈 〉  = ,f ba〈 〉 , and , , , ,m n f a b  are taken as above. 

From now on **A  will always be regarded as a 
Banach algebra with the first Arens product. 

Let **( )Z A  denote the set of all **m A∈  such that 

=mn m n  for all **n A∈ . We call **( )Z A  the 

topological center of **A . 
 
Lemma 2.2.  **( )Z A  is a closed subalgebra of **A  
containing A . 

 
Proof.  [3, p. 310] or [13, Lemma 1]. □ 

 

Lemma 2.3  For any **m A∈ , the following are 
equivalent: 

(a)  **( )m Z A∈ ; 

(b)  the map n mn→  from **A  into **A  is *w - *w  
continuous; 

(c)  the map n mn→  from **A  into **A  is *w - *w  
continuous on norm bounded subsets of **A . 
 
Proof.  [3, p. 313]. □ 

Note that for n  fixed in **A , the mapping 
m mn  is always *w - *w  continuous. 

We collect here some facts about the Arens product 
on 1 **( )L K  that we shall need later. 

 
Lemma 2.4.  Let 1, ( )L Kφ ψ ∈ , ( )f L K∞∈ . Then 

(i)  , = ,f fψ φ φ ψ〈 〉 〈 〉 . 

(ii)  = * ( )rf f UC Kψ ψ ∈ , f φ = * ( )lf UC Kφ ∈ . 
(iii)  ( ) = ( )a af fψ ψ , ( ) = ( )a af fφ φ  for .a K∈  

 
Proof.  immediate. □ 

 
Lemma 2.5.  Let *0 ( )m L K∞≠ ∈ . Then there is a net 

{ }uα  in 1( )L K  such that u mα ≤ , all uα  have 

compact support and u mα →  in the *w -topology of 
*( )L K∞ . 

 
Proof.  This follows from Goldstine's theorem and the 
density of 00 ( )C K  in 1( ).L K  □ 

Lemma 2.6.  If 1 **( ( ) )m Z L K∈  and ( )f L K∞∈ , then 
( )lfm UC K∈  and *( )( * ) = , x yfm x y m f〈 〉 . 

 
Proof.  See [9, Lemma 2.6]. □ 
 
Lemma 2.7.  If 1 **( ( ) )n Z L K∈  and 1( )u L K∈  are 
such that ( )( ) = 0n u f−  for all 0 ( )f C K∈ , then 

=n u . 
 
Proof.  See [9, Lemma 2.7]. □ 

3. Topological Center of UCl(K)* 

In this section we show that the topological center of 
*( )lUC K  is ( )M K . Let ( )lf UC K∈  and m ∈  
*( )lUC K . Define the function mf  on K  by ( )mf x  
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= , xm f〈 〉 . Then ( )lmf UC K∈ . Indeed, it is easy to 
see that ( )mf C K∈ . Also 

*

*

*

( )( ) = ( * )

= ( ) ( * )( )

, ( * )( )

= , ( * )( ) (*)

x

x y
x y

t x y
x y

t x y
x y

mf y mf x y

mf t d t

m f d t

m f d t

δ δ

δ δ

δ δ

= 〈 〉

〈 〉

∫

∫

∫

 

But the Bochner integral 
*

( * )( )t x y
x y

f d tδ δ∫  is 

( )y x f  since 

* *

*

*

*

( * )( )( ) = , ( * )( )

= , ( * )( )

= ( ) ( * )( )

= ( ) ( * )( )

= ( * ) = ( )( ).

t x y t x y
x y x y

t x y
x y

t x y
x y

x y
x y

y x

f d t f d t

f d t

f d t

f t d t

f x y f

ξ

ξ

ξ

ξ

δ δ ξ δ δ δ

δ δ δ

ξ δ δ

δ δ

ξ

〈 〉

〈 〉

∫ ∫

∫

∫

∫

 

So (*) implies that 

( )( ) = , ( ) = ( )( ),x y x xmf y m f m f y〈 〉  

that is, 

( ) = ( ).x xmf m f  (1) 

Hence 

( ) ( ) ( ) ( )

.

x y x y

x y

mf mf m f m f

m f f

− ≤ −

≤ −
 

Note that if = am δ  for some a K∈ , then =a af fδ . 

Now we may define a product on *( )lUC K  by 

, = ,nm f n mf〈 〉 〈 〉  for *, ( )lm n UC K∈  and f ∈  

( )lUC K . With this product, one can see that *( )lUC K  
is a Banach algebra. Lemma 3.1 The product on 

*( )lUC K  is the restriction of the first Arens product on 
*( )L K∞  to *( )lUC K . 

 
Proof.  See [15, Theorem 7]. □ 

Note that we can even identify *( )lUC K  as a closed 

right ideal of the Banach algebra *( )L K∞  with the first 
Arens product (see [14, p. 13]). 

 
Lemma 3.2.  If we take *

0 ( ) = { ( )lC K m UC K⊥ ∈ : 

0
| = 0}( )Cm K , then *

0( ) = ( ) ( )lUC K C K M K⊥ ⊕ . If 

*( )lm UC K∈  and 1=m m μ+  for 1 0 ( )m C K ⊥∈  and 

( )M Kμ ∈ , then 1=m m μ+  and 0 ( )C K ⊥  is a 

closed ideal in *( )lUC K . 
 
Proof.  See [15, Theorem 4]. □ 
 
Remark 3.3.  For *( )lm UC K∈  and ( ),lf UC K∈  we 
may define a bounded complex function fm  on K  by 

( ) = , xfm x m f〈 〉 . Generally, fm  is not in ( )lUC K  but 
for = am δ  ( a K∈ ) = = ( )a a lfm f f UC Kδ ∈ . If 

*( )ln UC K∈  and ( )lfm UC K∈ , for all ( )lf UC K∈ , 

then we may define another product on *( )lUC K  by 
, = ,m n f n fm〈 〉 〈 〉 . 

Let *( ( ) )lZ UC K  denote the set of all 
*( )lm UC K∈  such that ( )lfm UC K∈  for all 

( )lf UC K∈  and =mn m n  for all *( )ln UC K∈ . 

One can check that *( ( ) )lZ UC K  contains all point 
evaluation functionals xδ , x K∈ . 

 
Note 3.4.  For *( ) ,lm UC K∈  define the linear operator 

mL  from *( )lUC K  into itself by 

*( ) = , ( ) .m lL n mn n UC K∈  

Put 
*= { ( )lC m UC K∈ : mL  is w*-w* continuous on 

norm bounded subset of *( )lUC K }. 
Lemma 3.5.  ( )M K C⊆ . 
 
Proof.  For ( )M Kμ ∈ , we need to show that the map 

m mμ→  is *w - *w  continuous on any norm bounded 

subset of *( )lUC K . Let { }mα  be a net in *( )lUC K  
with m cα ≤ , for some constant c , converging to 

*( )lm UC K∈  in the *w -topology of *( )lUC K . Then 
for any ( )lf UC K∈  and ,s t K∈ , we have 
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| ( ) ( ) |m f s m f tα α−  = | , | .s t s tm f f c f fα〈 − 〉 ≤ −  
Hence by [11, p. 232] the family { }m fα  in ( )lUC K  is 
equicontinuous. Since m f mfα →  pointwise on K , 
the convergence is uniform on every compact set in K  
[11, Theorem 7.15]. Let ( )M Kμ ∈  be with compact 
support, then ,m m fαμ μ〈 − 〉  = ,m f mfαμ〈 − 〉  = 

( )( ) ( ) 0
K

m f mf x d xα μ− →∫ . Since measures with 

compact supports are norm dense in ( )M K  and 

m f c fα ≤ , it follows that m mαμ μ→  in the *w -

topology of *( )lUC K  and we are done. □ 
 

Lemma 3.6.  If m C∈  and ( ),lf UC K∈  then 
( )fm C K∈  and *( * ) = , x yfm x y m f〈 〉  for all 

, .x y K∈  
 
Proof.  If { }xα  is a net in K  converging to ,x  then 

the net { }xα
δ  converges to xδ  in the *w -topology of 
*( )lUC K  (see [8, Lemma 2.2B] and Lemma 3.2). 

Hence 

( ) = , = ,

= , ,

= , = , = ( ),

x x

x x

x x

fm x m f m f

m f m f

m f m f fm x

α α α

α

δ

δ δ

δ

〈 〉 〈 〉

〈 〉 → 〈 〉

〈 〉 〈 〉

 

since m C∈  and { }xα
δ  is bounded. Furthermore, we 

know that fm  is also bounded. Consequently 
( ).fm C K∈  Note that for every , ,x y K∈  the 

Bochner's integral 
*

( * )t x y
x y

f d δ δ∫  exists. Indeed, the 

map tt f→  from the compact subset *x y  of K  into 
( )lUC K  is continuous in the topology ( ( ), )lUC K Cσ  

of ( ),lUC K  and C  separates the points of ( )lUC K  
(C  contains the point evaluations). Hence for any 
m C∈  

* *

*

, ( * )( ) = , ( * )( )

= ( ) ( * )( )

= ( * ).

t x y t x y
x y x y

x y
x y

m f d t m f d t

fm t d t

fm x y

δ δ δ δ

δ δ

〈 〉 〈 〉∫ ∫

∫  (*) 

On the other hand, the Bochner's integral 

*
( * )( )t x y

x y
f d tδ δ∫  is equal to *x yf . By using Lemma 

2.4(iii), for every 1( )L K Cφ ∈ ⊆  (Lemma 3.5), (*) 
implies that 

*
, * ( ) = ( * ) = ( ) ( )

= (( ) )( ) = (( ) ) ( )

= ( ) ( ) = , ( ) ) .

t x y y
x y

y y x

y x y x

f d t f x y f x

f x f e

f e f

φ δ δ φ φ

φ φ

φ φ

〈 〉

〈 〉

∫
 

Hence from (*) we have *, ) = ( * ).x ym f fm x y〈 〉  □ 

 
Lemma 3.7.  For each *( )lm UC K∈  the following are 
equivalent: 

(a)  *( ( ) )lm Z UC K∈ , 

(b)  The operator mL  is *w - *w  continuous, 
(c)  m C∈ . 
 

Proof.  First we show that (a) implies (b). Let { }nα  be 

a net in *( )lUC K  converging to *( )ln UC K∈  in the 
*w -topology of *( )lUC K . Then for every 

( )lf UC K∈ , 

lim ( ) = lim ,

= lim , = lim ,

= , = ( ).

mn f mn f

m n f n fm

m n f mn f

α α α α

α α α α

〈 〉

〈 〉 〈 〉

〈 〉

 

(b) clearly implies (c). 
To show that (c) implies (a), let m C∈  and 

( )lf UC K∈ , then by Lemma 3.6, ( )fm C K∈ . To see 

that ( )lfm UC K∈ , we first show that if *( )C Kθ ∈  
and ,a K∈  then 

, ( ) = , . (**)a afm m fθ δ θ〈 〉 〈 〉  

Indeed, for = xθ δ  ( x K∈ ), by Lemma 3.6, we 
have 

*

, ( ) = ( )( ) = ( * )

= , = , ( )

= , ( ) = ,

= , = , .

x a a

a x x a

a x a x

a x a x

fm fm x fm a x

m f m f

m f m f

m f m f

δ

δ δ

δ δ δ δ

〈 〉

〈 〉 〈 〉

〈 〉 〈 〉

〈 〉 〈 〉

 

If θ  is a mean on ( )C K , then there is 

=1=
n

i xi i
β

βθ λ δΣ , a convex combinations of point 

evaluations, such that βθ θ→  in the *w -topology of 
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*( )C K . Hence 

, ( ) = lim , ( )

= lim , = , .

a a

a a

fm fm

m f m f

β β

β β

θ θ

δ θ δ θ

〈 〉 〈 〉

〈 〉 〈 〉
 

by *w - *w  continuity of mL  on norm bounded subsets 

of *( )lUC K . Consequently (**) holds. 
Now to see that ( )lfm UC K∈ , by [20, Theorem 

4.2.2, p. 88], it is enough to show that the map 
( )xx fm→  from K  to ( )C K  is weakly continuous. 

Let { }xα  be a net in K  converging to x  and 
*( ) ,C Kθ ∈  then by (**), 

lim , ( ) = lim ,

= , = , ( ) ,

x x

x x

fm m f

m f fm

α αα α
θ θ

δ θ θ

〈 〉 〈 〉

〈 〉 〈 〉
 

by *w - *w  continuity of mL  on norm bounded subsets 

of *( )lUC K . Hence, ( ).lfm UC K∈  
If n  is a mean on ( )lUC K , there exists a net 

=1= l
i xi i

n α
α λ δΣ  in *( ( ) )lZ UC K  (see Remark 3.3) 

where > 0iλ  and =1 = 1l
ii

α λΣ  such that n nα →  in the 
*w -topology of *( )lUC K . Hence for each 

( ),lf UC K∈  considering Remark 3.3, we have 

, = ,

= lim , = lim ,

= lim , = ,

m n f n fm

n fm m n f

mn f mn f

α α α α

α α

〈 〉 〈 〉

〈 〉 〈 〉

〈 〉 〈 〉

 

by the continuity of mL . Now by linearity, we have 

=m n mn  for all *( ) ,ln UC K∈  i.e. m ∈  
*( ( ) )lZ UC K . □ 

 
Remark 3.8.  For 1( )L Kφ ∈  and *( )lm UC K∈ , the 
product mφ  makes sense both as an element of 

*( )lUC K  and as an element of *( )L K∞  (see [14, §3, p. 
13]). 

 
Lemma 3.9.  Let * *: ( ) ( )lL K UC Kπ ∞ →  be the 

adjoint of the inclusion map of ( )lUC K  into ( )L K∞ . 

Then π  is *w - *w  continuous and = ( )mn m nπ  for 

each *, ( ) .m n L K∞∈  

Proof.  It is easy to check that π  is *w - *w  
continuous. For the second part, we first define a 
continuous map f Ff  of ( )L K∞  into itself for each 

*( )lF UC K∈ . Note that for 1( ), ( ),f L K L Kφ∞∈ ∈  we 
know that ( )lf UC Kφ ∈  (Lemma 2.4(ii)), so 

,F fφ φ〈 〉  is a continuous linear functional on 
1( )L K  and therefore corresponds to an element Ff  of 

( )L K∞ . The adjoint of fFφ  is a continuous and 
*w -continuous map m mF  of *( )L K∞  into itself. 

Thus for 1( )L Kφ ∈ , ( )f L K∞∈ , *( )lF UC K∈ , and 
*( )m L K∞∈ , 

, = , , , = , (*).Ff F f mF f m Ffφ φ〈 〉 〈 〉 〈 〉 〈 〉  

Let 1{ } ( )i L Kφ ⊆  be a net converging to m  in the 
*w -topology of *( )L K∞  then for each ( ),f L K∞∈  by 

(*), 

, = lim , = lim ,

= lim , = lim ( ),

= lim ( ) , = lim , ( )

= , ( ) = ( ), .

i ii i

i ii i

i ii i

mn f n f n f

n f n f

n f n f

m n f m n f

φ φ

φ π φ

π φ φ π

π π

〈 〉 〈 〉 〈 〉

〈 〉 〈 〉

〈 〉 〈 〉

〈 〉 〈 〉

 

Lemma 3.10.  *( ( ) )lZ UC K  = { *( )lm UC K∈ : mφ ∈  
*( ( ) )Z L K∞  for each 1( )L Kφ ∈ }. 

 
Proof.  Let 1( )L Kφ ∈  and *( ( ) )lm Z UC K∈ . By 

Remark 3.8, we may consider mφ  in 1 **( )L K . To 

prove that *( ( ) )m Z L Kφ ∞∈ , by Lemma 2.3, it is 

enough to show that n mnφ→  is *w - *w  continuous. 

If n nα →  in the *w -topology of *( )L K∞ , then 

( ) ( )n nαπ π  (since π  is *w - *w  continuous) in the 
*w -topology of *( )lUC K . Hence, by Lemma 3.7, for 

any ( ),f L K∞∈  

, = ( ),

= ,

= ( ), ( ),

= ( ( )),

= ( ), = , ,

mn f mn f

mn f

m n f m n f

m n f

m n f mn f

α α

α

α

φ φ

φ

π φ π φ

φ π

φ π φ

〈 〉 〈 〉

〈 〉

〈 〉 → 〈 〉

〈 〉

〈 〉 〈 〉
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so by Lemma 2.3, *( ( ) )m Z L Kφ ∞∈ . 

Conversely, let *( ) ,lm UC K∈  and n nα →  in the 
*w -topology of *( ) ,lUC K  then for each ( ),lf UC K∈  

there exists ( )lg UC K∈  and 1( )L Kφ ∈  such that 
=f gφ  ([19, Lemma 2.2] and Lemma 2.4(ii)). Hence 

, = , = ( ),

= , ,

= , = , .

mn f mn g mn g

mn g mn g

mn g mn f

α α α

α

φ φ

φ φ

φ

〈 〉 〈 〉 〈 〉

〈 〉 → 〈 〉

〈 〉 〈 〉

 

Now we are ready for the main theorem of this 
section. 

 
Theorem 3.11.  *( ( ) ) = ( )lZ UC K M K  

 
Proof.  By Lemmas 3.5 and 3.7, it is enough to show 
that *( ( ) ) ( )lZ UC K M K⊆ . Let *( ( ) )lm Z UC K∈ , 
then by Lemma 3.2, 1=m mμ + , for some ( )M Kμ ∈  

and 1 0 ( )m C K ⊥∈ . It is enough to show that 1 = 0m . 

Let 1( )L Kφ ∈ . Since 0 ( )C K ⊥  is an ideal in *( )lUC K  

(Lemma 3.2) 1 0 ( )m C Kφ ⊥∈  and 1 **
1 ( ( ) )m Z L Kφ ∈ , 

by Lemma 3.10. Hence 1 = 0mφ  (Lemma 2.7). Let 
( )lf UC K∈ , then =f gφ , for some ( )lg UC K∈ , 

and 1( )L Kφ ∈  ([19, Lemma 2.2] and Lemma 2.4(ii)), 
and 

1 1 1 1, = , = , = , = 0.m f m g m g m gφ φ φ〈 〉 〈 〉 〈 〉 〈 〉  

Hence 1 = 0m , as desired. □ 
 

Corollary 3.12.  If K  is commutative, then ( )M K  is 

the algebraic center of *( )lUC K . 
 

Corollary 3.13.  Let *( )lm UC K∈  be such that mL  is 

weak * -weak *  continuous on any bounded sphere of 
*( )lUC K , then ( )m M K∈ . 

 
Definition 3.14.  A bounded continuous function f  is 
called weakly almost periodic if { : }x f x K∈  is 
relatively weakly compact in the space of all bounded 
continuous functions on K . We denote the Banach 
space of all weakly almost periodic functions on K  by 

( )WAP K . 
The following corollary was proved by Skantharajah 

for hypergroups in [20, Theorem 4.2.7, p. 94], and by 

Granirer for groups in [7, p. 62-64]. Another version of 
this Corollary was proved in [15, Theorem 19]. A.T. 
Lau has also proved it in [12, Corollary 4]. 

 
Corollary 3.15.  Let K  be a locally compact 
hypergroup. Then K  is compact if and only if 

( ) = ( )lUC K WAP K . 
 

Proof.  If K  is compact, then by [8, 2.2D and 4.2F] we 
have ( )lUC K  = ( )C K  = ( )WAP K . For the converse, 

from ( )lUC K  = ( )WAP K  = *( ( ) )lZ UC K  = ( )M K , 
it follows that K  is compact. □ 

For the following corollary in the group case, see 
[12, Corollary 5]. 

 
Corollary 3.16.  Let K  be a locally compact 
hypergroup. Then K  is compact if and only if 

( )lUC K  has a unique left invariant mean. 
 

Proof.  If K  is compact, then the normalized Haar 
measure is the unique left invariant mean on 

( ) = ( )lUC K C K . 
Conversely, let m  be the unique left invariant mean 

on ( )lUC K , then one can check that mn  is also left 

invariant mean on ( )lUC K , for each *( )ln UC K∈ . 
Hence =mn mλ , for some complex number λ . Let 
{ }nα  be a net in *( )lUC K  converging to n  in the 

weak * -topology, and =mn mα αλ , =mn mλ , then 
= (1) = (1)mn nα α αλ  converges to (1) = (1) =n mn λ . 

Hence mL  is weak * -weak *  continuous, and by 
Theorem 3.11 and Proposition 3.7, ( )m M K∈  and by 
[8, 7.2B], K  is compact. □ 
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