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Abstract 
We adopt the general theory of Non-equilibrium thermodynamics to 
the two-fluid Model of He-II. In this Model superfluid is considered 
as a fluid of two-components each of with its own density and velocity 
fields. In contrast to the earlier works, our model assumes that super-
fluid carries small entropy ( ), owing to the Fliessbach. Since the fluid 
has two independent velocity fields, there is no preferred frame of 
references and hence, no unique definition of internal energy. The 
explicit forms of this quantity are worked out in different models and 
compared with our definition of internal energy and Gibbs function. 
The existing relation and unification together with the equivalency of 
London and Landau’s theories is also introduced. 
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Introduction 
The two-fluid Model is concerned with the macroscopic theory of 
superfluid   He-II, i.e. the liquid phase of at . Several 
authors have used this Model ( Donnelly and Roberts, 1974; Londau, 
1978; London, 1954; Tilley, D.R. and Tilley, J., 1990) and considered 
He-II as a mixture of two fluids, normal fluid and superfluid, each of 
with its own density and velocity fields. It is assumed that superfluid 
has no viscosity and no entropy and hence, heat is only transferred by 
normal fluid. Recently, Fliessbach ( Fliessbach, 1991; Fliessbach and 
Schaefer, 1994) has pointed out that the superfluid can carry small 
amount of entropy, which is an evidence for the existence of sixth 
sound and it has been supported experimentally. Owing to Fliessbach 
and in the framework of two-fluid Model, we identify He-II with a 
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two-component mixture behaving independently and undergoing to 
the immediate chemical reaction sn ↔ . Applying the basic 
conservation relations of non-equilibrium thermodynamics (de Groot, 
and Mazur, 1984) in which conventionally employs center-of-mass 
velocity, we attempt to find relations between internal energies and 
Gibbs’s func-tions appearing in different theories of superfluid 
heluim. 

 
a) Basic conservation Laws 
I) Mass balance: 
For each component separately:                      
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In above relations, nnn J,v,ρ  and  are the density, velocity, 
mass current relative to the center-of-mass velocity and the rate of 
production of normal component due to the chemical reaction , 
respectively. For the superfluid component similar quantities but with 
subscript , can be defined. Of course,  is total density and

cn jν

sn ↔

s ρ v  is the 
center-of-mass velocity and for the present single reaction, 

ννν sn ≡−= . 
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II) Momentum balance: 

ssnnijt FρFρPvDρ ++−∂=                     (4) 

Where stands for substantial time derivative, P is hydrostatic 

pressure and
tD

nF and sF are external forces per unit mass acting on the 
normal and superfluid components, respectively. Note that we have 
omitted the viscous pressure tensor from r.h.s. of (4) since viscosity 
effects are not being considered in the present work. 
 
III) Energy balance 

sssnnnjq,jj
2

t v.Fρv.Fρ)JvP(u)v
2
1(ρD +++−∂=+   (5)  

Where qJ is the flux of heat and the total energy per unit mass of 
whole fluid is separated in two parts: 

uv
2
1E 2 +=                                      (6) 

In eq. (6), the first term is the kinetic energy of center-of-mass motion 
and u is the internal energy per unit mass. 
 
IV) Gibbs equation and thermodynamic parameters 
The local equilibrium hypothesis implies that the intensive form of the 
Gibbs relation can be used: 

      ssnn dcµdcµdVPdudsT −−+=                   (7) 
Where  is specific volumeV )ρ1V( = ,  is specific entropy and 

,
s

sn µ,µ )ρρ(c nn =  and )ρρ(c ss = are the chemical potentials 
and concentrations of normal and superfluid, respectively. 
The specific Gibbs function is related to the chemical potentials of 
the two fluids (partial specific Gibbs functions) in the form: 

g

PVTsuµcµcg ssnn +−=+=            (8) 
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b) Landau’s Theory 
In the framework of the two-fluid model, there are two velocity fields 
within the system and hence there is no preferred frame of references 
for He-II. Different frame of references can be used to define the 
thermodynamic variables of the whole fluid taking account of the 
separate motion of the normal and superfluid components; and the 
relative motion of the two fluids. There is no unique definition of 
internal energy when there is relative motion. In addition the Gibbs 
relation appropriate for He-II can be exp-ressed in different forms 
depending on the frame of references. Landau uses -frame, which 
is the rest frame relative to the superfluid fraction. In this frame, total 
momentum density of the whole fluid is that of normal fluid moving at 

0k

)vv( sn −  relative to the superfluid:                                    

)vv(cρJ snn0 −=                            (9) 
If we call the total energy density  in -frame, the internal 
energy per unit mass is defined by: 
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Since the first term on the r.h.s is the kinetic energy of the fluid,  is 
the internal energy when both components are at rest. 

Lu

Starting from (9) and (10), total momentum and energy can be 
transferred to the Laboratory frame using a Galilean transformation. 
Denoting these by quantities J and  in the -frame respectively, 
we have: 

E k

s0 vρJJ +=                                (11) 
And                                                                                                           

L2

2

u
2ρ
J

ρ
E

+=                              (12) 

We now substitute (9) and (11) in (12) and make use of the identity, 
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Where the quantity  is called “ kinetic energy of internal 
convection” then we find: 

ik

L
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Thus, our definition of internal energy (6) is the same as Landau’s. 
Landau defines thermodynamic variables of the fluid in -frame 
too. He suggests the following Gibbs relation: 

0k

0sn0 Jd).vv(dρφs)Td(ρdE −++=          (15) 
Where  is the Gibbs function per unit mass in superfluid rest frame? φ
From (15) and taking in account the definition of pressure as 

[ ] VJρsV,ρV,0 0
VV)(EP ∂∂−=   it can be shown that: 

0sn0 J).vv(PsTρEρφ −−+−=                  (16) 
The Gibbs relation (15) indicates that in Landau’s theory momentum 
density (drift momentum of excitation viewed in -frame) is 
considered as an independent thermodynamic variable, where its 

conjugate is relative velocity 

0k

)vv( sn − . 
 
c) London’s Theory 
London employs -frame and expresses total energy per unit mass in 
the form: 

k
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In fact he adapts a variational principle to the two-fluid Model and 
starts with Lagrangian density: 

Lond.
2
ss

2
nnLond. uvc

2
1vc

2
1L ++=                 (18) 



         Havvaie P.,  and Rajabtabar A.                                       IIJS, 5 (Physics), 2004 
___________________________________________________________________ 
128

Where is the internal energy of the whole fluid? Performing the 
variations and treating  as an independent variable, London derives 
a Gibbs equation in the form: 

Lond.u
nc

n
2

snLond. dc)vv(
2
1PdVTdsdu −+−=            (19)  

Which shows that the quantity 2
sn )vv(

2
1

−  is thermodynamic 

conjugate of normal fluid concent-ration . If we now use the 
identity (13) in our definition of total energy (6), we will find that: 

nc

iLond. kuu −=       (20) 
Equation (20) indicates that London internal energy is different from 

 by an amount of , i.e. the kinetic energy of internal convection. 
This difference appears in the Gibbs function through the relation:          
u ik

VPTsug Lond.Lond. +−=               (21) 
Which makes  different from . Lond.g g
 
d) Lin’s Theory 
Within the context of a general variational principle, Lin considers 
liquid He-II as a single component fluid and proposes the following 
Lagrangian density (Lin, 1963): 

Lin.
2

Lin. uv
2
1L −=                   (22) 

When the identity (13) is used, (22) transforms as: 
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Where     
iLond.Lin. kuu −=                            (24) 

 
Equation (23) means that Lin’s Lagrangian density is algebrically 
equal to London’s, but is regarded as the difference of kinetic energy 
of center-of-mass motion and internal energy defined in (24). If we 
substitute (20) in (24), we find: 
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iLin. 2kuu −=                          (25) 
Also with (6) and (25) it can be shown that: 

εuv
2
1

Lin.
2 ≠+                       (26) 

Which states that the sum of kinetic and internal energy is not equal to 
total energy in this case. 

Starting with Lagrangian density (23) and using ordinary procedure 
of the variational method, Lin derives a Gibbs relation in the form: 
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⎤
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2
1)dcc(PdVTdsdu        (27) 

Indicating that the pairs of sn cc and ni ck are conjugate variables. 
It should be mentioned that there is an additional constraint in Lin’s 
variational approach, which is associated with vorticity (e.g., see: 
Jackson, 1978; Geurst, 1979; Geurst 1980). 
 
e) Equivalence of Landau and London Theories 
The theories of Landau and London were thought for a long time to be 
alternative formulations of two-fluid thermohydrodynamics. The 
following discussion shows that they are equivalent. 
We start with the expression for total energy density in both methods. 
The first is the one presented by Landau: 

00s
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The second is London’s: 
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If we equate (29) with (28), gives: 
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We now differentiate (30) and use (15), after arranging the terms 
yields: 
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Because of (16) the bracketed expression in (31) is equal to 
pressure P . Using this together with the identity )ρdρ(dV 2−= , 
equation (31) reads: 

n
2
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Therefore, we arrived at the same Gibbs relation (19) derived by 
London. It should be mentioned that Jackson (Jackson, 1978) and 
Geurest (Geurst, 1979) had also reached the same conclusion but 
using different approaches.  
Finally equation (30) can be used to establish a relationship between 
the Gibbs functions in these methods. In order to show this we make 
use of (16) and the thermodynamic relation (21) in (30), we obtain: 

2
snnLond. )vv(c

2
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Having shown the eqivalence of London and Landau’s theories, we 
shall in future make detailed comparisons between the present work 
and London’s theory. 
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