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Abstract
In this paper, we apply the notion of α-open sets in topological spaces
to present and study contra-α-continuity as a new generalization of
contra-continuity (Dontchev, 1996).
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1. Introduction
In 1996, Dontchev (Dontchev, 1996) introduced a new class of
functions called contra-continuous functions. Recently, Dontchev and
Noiri (Dontchev and Noiri, 1999) introduced and studied, among
others, a new weaker form of this class of functions called contra-
semicontinuous functions. They also introduced the notion of RC-
continuity (Dontchev and Noiri, 1999) which is weaker than contra-
continuity and stronger than ?Ý-continuity (Tong, 1998). The present
authors (Jafari and Noiri, 1999) introduced and studied a new class of
functions called contra-super-continuous functions which lies between
classes of RC-continuous functions and contra-continuous functions.

This paper is devoted to introduce and investigate a new class of
functions called contra-?e-continuous functions which is weaker than
contra-continuous functions and stronger than both contra-
semicontinuous functions and contra-precontinuous functions (Jafari
and Noiri, 2001).
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2. Preliminaries
Throughout this paper, all spaces X and Y (or (X,ι) and (Y, σ)) are
topological spaces. A subset A is said to be regular open (resp.
regular closed) if A = Int(CI(A)) (resp. A=CI(Int(A))) where CI(A)
and Int(A) denote the closure and interior of A.

Definition 2.1.A subset A of a space is called:
(1) ?|-open (Abd El-Monsef et al., 1983) if A⊂ CI(Int(CI(A))),
(2) preopen (Mashhour et al., 1982) if A⊂ Int(CI(A)),
(3) semi-open (Levine, 1963) if A⊂ CI(Int(A)),
(4) ?�-open (Njåstad, 1965) if A⊂ Int(CI(Int(A))),

The complement of a preopen (resp. semi-open, ? -open, ? -open) set
is said to be preclosed (resp. semi-closed, ?(-closed, ?(-closed) The
collection of all closed (resp. preopen, semi-open, ?±-open and ?±-open)
subsets of X will be denoted by C(X) (resp. PO(X), SO(X), ?:(X),
?ÃO(X)). It is shown in (Njåstad, 1965) that ?Ã(X) (or ια) is a topology
for X and it is stronger than the given topology on X. By αCI(A), we
denote the closure of a subset A with respect to ?«(X). We set C(X, x)
={ V ∈ C(X) x ∈V }for x ∈ X. We define similarly PO(X, x) SO(X,
x), α(X, x) and ?ÏO(X, x). Recall that a subset A of X is said to be
generalized closed (briefily g-closed (Levine, 1970)) (resp. ?á-
generalized closed (briefly ag-closed) (Maki et al., 1994) if CI(A) ⊆ U
(resp. αCI(A) ⊆ U ) whenever A ⊆ U and U is open. Recall that a
subset A of X is called NDB-set (Dontchev, preprint), if it has nowhere
dense boundary. A subset A of X is called ?4-open if it is the union of
regular open sets. The complement of a ?F-open set is called ?F-closed.
Equivalently, A ⊂ X is called ?X-closed (Velicko, 1968) if A = Cl?‡(A),
where Cl?‡(A) = {x ∈ X |Int(CI(U)) ∩ A ≠ ∅ , U is an open set and x
∈ U}. A subset A of X is called ?|-generalized closed (Dontchev and
Ganster, 1996) if Cl?‡(A) ⊆ U, whenever A ⊆ U and U is open in X.

Definition 2.2.A function f : X → Y is called perfectly continuous
(Noiri, 1984) (resp. RC-continuous (Dontchev & Noiri, 1999) if for
each open set V of Y, f -1 (V) is clopen (resp. regular closed) in X.
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Definition 2.3. A function f: X → Y is called precontinuous
(Mashhour et al., 1982) (resp. semi-continuous (Levine, 1963), ?ý-
continuous (Abd El-Monsef et al., 1983) if for each x ∈ X and each
open set V of Y containing f(x), there exists U∈ PO(X, x)
(resp. U ∈ SO(X, x) , U∈ ?Õ(X, x)) such that f(U) ⊂ V.

Definition 2.4. A function f : X → Y is called contra-super-
continuous (Jafari & Noiri, 1999) if for each x ∈ X and each closed set
V of Y containing f(x), there exists a regular open set U in X
containing x such that f(U) ⊂ V.

Definition 2.5. A function f : X → Y is called contra-? -̧continuous
(resp. contra-continuous (Dontchev, 1996), contra-semicontinuous
(Dontchev & Noiri, 1999), contra-precontinuous (Jafari & Noiri,
2001) if f -1 (V) is ?_-closed (resp. closed, semi-closed, preclosed) in X
for each open set V of Y.

Remark 2.1. Every contra-continuous function is contra-α-
continuous but not conversely as the following example shows.

Example 2.1. Let X = {a, b, c}, 	 = {X, ∅ , {a}} and σ = {X, ∅ ,
{b}, {c}, {b, c}}. Then the identity function f : (X,	) → (X,σ) is
contra-?�-continuous but not contra-continuous.

3. Some properties
Definition 3.1. Let A be a subset of a space (X,	). The set ∩ {U ∈ 	|
A ⊂ U } is called the kernel of A (Mrsevic, 1986) and is denoted by
Ker (A).

Lemma 3.1. The following properties hold for subsets A, B of a
space X:
(1) x ∈ Ker(A) if and only if A ∩ F ≠ ∅ for any F ∈ C(X, x).
(2) A ⊂ Ker(A) and A = Ker(A) if A is open in X.
(3) A ⊂ B, then Ker(A) ⊂ Ker(B).

Theorem 3.1. The following are equivalent for function f : X → Y :
(1) f is contra-?�-continuous;
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(2) for every closed subset F of Y, f -1 (F) ?t?t(X);
(3) for each x ∈ X and each F ∈ C(Y, f(X), there exists U ∈ ?ý(X, x)
such that f(U) ⊂ F;
(4) f(?�Cl(A)) ⊂ Ker (f(A)) for every subset A of X;
(5) ?C̃l(f -1(B)) ⊂ f -1 (Ker(B)) for every subset B of Y.

Proof. The implications (1) ⇔ (2) and (2) ⇒ (3) are obvious.
(3) ⇒ (2): Let F be any closed set of Y and x ∈ f -1(F). Then f(x) ∈ F
and there exists Ux ∈ ?3(X, x) such that f(Ux) ⊂ F. Therefore, we obtain
f -1(F) = ?¼{ Ux |x ∈ f -1(F)} ∈ ?¼(X).
(2) ⇒ (4): Let A be any subset of X. Suppose that y ∉ Ker(f(A)). Then
by Lemma 3.1 there exists F ∈C(X, y) such that f(A) ∩ F = ∅ . Thus,
we have A ∩ f -1(F) = ∅ and ?WCl(A) ∩ f -1(F) = ∅ . Therefore, we
obtain f(?àCl(A)) ?à F = ∅ and y ∉ f(?àCl(A)). This implies that
f(?hCl(A)) ⊂ Ker (f(A)).
(4) ⇒ (5): Let B be any subset of Y. By (4) and Lemma 3.1 we have
f(?zCl (f -1(B) )) ⊂ Ker (B) and ?zCl( f -1(B)) ⊂ f -1(Ker(B)).
(5) ⇒ (1): Let V be any open set of Y. Then, by Lemma 3.1 we have
?�Cl (f -1(V) ⊂ f -1(Ker(V)) = (f -1(V) and ?�Cl((f -1(V)) = f -1(V). This
shows that f -1(V) is ?+-closed in X.

Theorem 3.2. A function f : (X, 	) → (X, σ) is contra-?«-continuous
if and only if f : (X, 	α) → (X, σ) is contra-continuous.

Recall that a subset of a topological space (X,	) is called a ?Ï-set if it
is the intersection of open sets.

Theorem 3.3. A function f : (X, 	) → (X, σ) is contra-?l-continuous
if and only if inverse images of Λ -sets are closed.

Lemma 3.2. (Mashhour et al., 1983). Let A ∈ PO(X) and B ∈
?�(X),The A ∩ B ∈ ?�(A).

Theorem 3.4. If f: X→ Y is contra-?•-continuous and U ∈ PO(X),
then fU : U → Y is contra-?¢-continuous.

Lemma 3.3. (Mashhour et al., 1983). If A ∈ ?"(Y), and Y ∈
?4(X),Then A ∈ ?4(X).
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Theorem 3.5. Let f: X→ Y be a function and {Ui i ∈ I }be a cover
of X such that Ui ∈ ?ý(X) for each i ∈ I. If f Ui : Ui → Y is contra-?ý-
continuous for each i ∈ I, than f is contra-?†-continuous.

Proof. Suppose that F is any closed set of Y. We have
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Since fUi is contra-?z-continuous for each i∈ I, it follows that
f(Ui)-1(F) ∈ ?�(Ui). Then, as a direct consequence of Lemma 3.3 we
have f -1(F) ∈ ?Œ(X) which means that f is contra-?Œ-continuous.

Now we mention the following well-known result:

Lemma 3.4. The following properties are equivalent for a subset A
of a space X:

(1) A is clopen;
(2) A is ?�-closed and ?�-open;
(3) A is ?Ž-closed and preopen.

Theorem 3.6. For a function f: X→ Y the following continuous are
equivalent:

(1) f is perfectly continuous;
(2) f is contra-?è-continuous and ?è-continuous;
(3) f is contra-?ú-continuous and precontinuous.

Proof. The proof follows immediately from Lemma 3.4.

Remark 3.1. In Theorem 3.6, (2) and (3) are decompositions of
perfect continuity. The following example shows that contra-?�-
continuity and precontinuity (or ?.-continuity) are independent of each
other.

Example 3.1. The identity function on the real line with the usual
topology is continuous and hence ?á-continuous and precontinuous.
The inverse image of (0, 1) is not ?ó-closed and the function is not
contra-?�-continuous .

Example 3.2. Let (Ζ,κ) be the digital line (Khalimsky et al., 1990)
and define a function f: (Ζ,κ) → (Ζ,κ) by f(n) = n + 1 for each n ∈Z .
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Then f is contra-?t-continuous. But Int(Cl(f -1 ({1}) ))= ∅ and f -1 ({1})
∉ PO (Ζ,κ), hence f is neither precontinuous nor ?ý-continuous .

Theorem 3.7. Let Y be a regular space. For a function f: X→ Y, the
following properties are equivalent:

(1) f is perfectly continuous;
(2) f is RC-continuous;
(3) f is contra-continuous;
(3) f is contra-?�-continuous.

Proof. The following implications are obvious: perfect continuity ⇒
RC-continuity ⇒ contra-continuity ⇒ contra-?Ê-continuity. We show
the implication (4) ⇒ (1). Let x be an arbitrary point of X and V an
open set of Y containing f(x). Since Y is regular, there exists an open
set W in Y containing f(x) such that Cl(W) ⊂ V. Since f is contra-?j-
continuous, so by Theorem 3.1 there exists U ∈ ?ó(X, x) such that
f(U)⊂ Cl(W). Then f(U) ⊂ Cl(W) ⊂ V. Hence, f is ?|-continuous.
Since f is contra-?�-continuous and ?�-continuous, by Theorem 3.6 f is
perfectly continuous.

Corollary 3.1. If a function f: X→ Y is contra-? -̈continuous and Y is
regular, then f is continuous.

Remark 3.2. The converse of corollary 3.1 is not true. Example 3.1
shows that continuity does not necessarily imply contra-? -̀continuity
even if the range is regular.
Recall that a space X is said to be rim-compact if each point of X has a
base of neighborhoods with compact frontiers.

Lemma 3.5 (Noiri (1976), Theorem 4]). Every rim-compact
Hausdorff space is regular.

Corollary 3.2. If a function f: X→ Y is contra-?Ý-continuous and Y is
rim-compact Hausdorff, then f is continuous.

Definition 3.2. A function f: X→ Y is called contra-?*g-continuous if
the preimage of every open subset of Y is ?<g-closed.
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Recall that a space X is T½ - space (Levine, 1961) if every
generalized closed set is closed.

Lemma 3.6 (Dontchev, 1997). For a space X the following
conditions are equivalent:

(1) X is T½- space.
(2) Every ?óg-closed subset of X is ?ó-closed.

Theorem 3.8. If a function f: X→ Y is contra-?3g-continuous and X
is T½ - space, then f is contra-?¼-continuous.

Recall that a function f: X→ Y is NDB-continuous (Dontchev,
preprint) if the preimage of every open set is an NDB-set

Lemma 3.7 (Dontchev, preprint) For a subset A of a space X the
following conditions are equivalent:

(1) A is ?/-closed..
(2) A is a preclosed NDB-set.

Theorem 3.9. For a function f: X→ Y, the following conditions are
equivalent:

(1) f is contra-?+-continuous.
(2) f is contra- precontinuous and NDB-continuous.

Definition 3.3. A function f: X→ Y is said to be
(1) I.c.?Ú-continuous if for each x∈X and each closed set F of Y

containing f(x), there exists an ?ì-open set U in X containing x such
that Int[f(U)] ⊂ F.

(2) (?�, s)-open if f(U) ∈ SO(Y) for every U ∈?�(X).

Theorem 3.10. If a function f: X→ Y is I.c.?•-continuous and (?•, s)-
open, then f is is contra-?¢-continuous.

Proof. Let x be an arbitrary point of X and V∈C(Y, f(x)). By
hypothesis f is I.c.?4-continuous which implies the existence of a set U
∈ ?F(X, x) such that int[f(U)] ⊂ V. Since f is (?F, s)-open, then f(U)
∈SO(Y). It follows that f(U) ⊂ Cl(Int(f(U))) ⊂ Cl(V) and therefore f is
contra-?j-continuous.
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Definition 3.4. A filter base Λ is said to be ?t-convergent (Jafari,
2001) (resp. c-convergent ) to a point x in X if for any U ∈ ?ý(X, x)
(resp. U ∈ C(X, x)), there exists B ∈ Λ such that B ⊂ U.

Theorem 3.11. A function f: X→ Y is contra-?Æ-continuous if and
only if for each point x ∈X and each filter base Λ in X ?O-converging to
x, the filter base f(Λ ) is c-convergent to f(x).

Proof. Necessity. Let x ∈ X and Λ be any filter base in X ?�-
converging to x. Since f is contra-?¡-continuous, then for any V ∈ C(Y,
f(x)), there exists U ∈ ?*(X, x) such that f(U) ⊂ V. Since Λ is ?*-
converging to x, there exists a B ∈ A such that B ⊂ U. This means that
f(B) ⊂ V and therefore the filter base f(Λ ) is c-convergent to f(x).
Sufficiency. Let x ∈ X and V ∈ C(Y, f(x)). If we take Λ to be the set
of all sets U such that U∈?N(X, x), then Λ will be a filter base which ?N-
converges to x. Thus, there exists U ∈Λ such that f(U) ⊂ V.

4. Contra-?�-closed graphs
We begin with the following notion:

Definition 4.1. The graph G(f) of a function f: X→ Y is said to be
contra-?á-closed if for each (x, y)∈ (X×Y)- G(f), there exist U∈ ?á(X, x)
and V∈ C(Y, y) such that (U×V) ∩ G(f) = ∅ .

Lemma 4.1. The graph G(f) of a function f: X→ Y is said to be
contra-?…-closed in X×Y if and only if for each (x, y) ∈ (X×Y) - G(f),
there exist U∈ ?—(X, x) and V ∈ C(Y, y) such that f(U) ∩ V = ∅ .

Theorem 4.1. If f: X→ Y is contra-?Æ-continuous and Y is Urysohn,
then G(f) is contra-?Ø-closed in X×Y.

Proof. Let (x, y)∈ (X×Y)- G(f), then y ≠ f(x) and there exist open
sets V, W such that f(x)∈V, y∈W and Cl(V) ∩ Cl(W) = ∅ . Since f is
contra-?|-continuous, there exists U∈?|(X,x) such that f(U)⊂ Cl(V).
Therefore, we obtain f(U) ∩ Cl(W) = ∅ . This shows that G(f) is
contra-? -closed
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Theorem 4.2. If f: X→ Y is ?t-continuous and Y is T1, then G(f) is
contra-?ý-closed in X×Y.

Proof. Let (x, y)∈ (X×Y)- G(f), then f(x) ≠ y and there exists an
open set V of Y such that f(x)∈V and y∉V. Since f is ?Æ-continuous,
there exists U∈?O(X, x) such that f(U) ⊂ V. Therefore, we obtain f(U)
∩ (Y-V) = ∅ and Y-V ∈ C(Y, y). This shows that G(f) is contra-?Ø-
closed X×Y.

Definition 4.2. A space X is said to be ?¡-compact (Maheshwari &
Thakur, 1985) (resp. strongly S-closed (Dontchev, 1996)) if every ?*-
open (resp. closed) cover of X has a finite subcover.

A subset A of a space X is said to be ?A-compact relative to X (Noiri
& Di Maio, 1988) if every cover of A by ?Ê-open sets of X has a finite
subcover. A subset A of a space X is said to be strongly S-closed if the
subspace A is strongly S-closed.

Theorem 4.3. If f: X→ Y has a contra-?(-closed graph, then the
inverse image of a strongly S-closed set K of Y is ?b-closed in X.

Proof. Assume that K is a strongly S-closed set of Y and x ∉ f -1(K).
For each k∈K, (x, k) ∉G(f). By Lemma 4.1, there exist Uk∈ ?ô(X, x)
and Vk∈C(Y, k) such that f(Uk) ∩ Vk = ∅ . Since {K∩ Vkk∈ K} is a
closed cover of the subspace K, there exists a finite subset K1⊂K such
that k ⊂ U{VK k∈ K1 k∈ K1}. Set U=∩ {Ukk∈ K1}, then U ∈?*(X, x)
and f(U)∩ K = ∅ . Therefore U ∩ f -1(K)=∅ and hence x∉?<Cl(f -1(K)).
This shows that f -1(K) is ?N-closed in X.

Theorem 4.4. Let Y be a strongly S-closed space. If a function f:
X→ Y has a contra-?ç-closed graph, then f is contra-?ç-continuous.

Proof. Suppose that Y is strongly S-closed and G(f) is contra-?g-
closed. First, we show that an open set of Y is strongly S-closed. Let V
be an open set of Y and {H?‡α∈∇} be a cover of V by closed sets H?‡

of V. For each α∈∇ , there exists a closed set K?‡ of X such that H?‡=
K?‡∩ V. Then, the family {K?‡α∈∇} ∪ (Y-V) is a closed cover of Y.
Since Y is strongly S-closed, there exists a finite subset ∇ °⊂ ∇ such
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that Y = U {K?‡α∈∇ ° } ∪ (Y-V). Therefore we obtain V = (U
{H?‡α∈∇ °}. This shows that V is strongly S-closed. For any open set
V, by Theorem 4.3 f -1(V) is ?†-closed in X and f is contra-?†-
continuous.

5. Covering properties

Theorem 5.1. If f: X→ Y is contra-?S-continuous and K is ?S-compact
relative to X, then f(K) is strongly S-closed in Y.

Proof. Let {H?‡α∈∇ }be any cover of f(K) by closed sets of the
subspace f(K). For each α∈∇ , there exists a closed set K?‡ of n Y such
that H?‡= K?‡∩ f(K). For each x∈K, there exists α(X) ∈∇ such that
f(x) ∈ K?‡(x) and by theorem 3.1 there exists Ux∈ α(X, x) such that f(Ux)
⊂ K?‡(x). Since the family { Uxx∈K} is a cover of K by ?D-open sets of
X, there exists a finite subset K0 of K such that K ⊂ U{ Uxx∈K°}.
Therefore, we obtain f(K) ⊂U{ f(Ux)x∈K°}which is a subset of ∪ {
K?‡(x) α∈K°}. Thus, f(K)= ∪ {H?‡(x) x∈K°}and hence f(K) is strongly
S-closed.

Corollary 5.1. If f: X→ Y is a contra-?\-continuous surjection and X
is ?n-compact, then Y is strongly S-closed.

Definition 5.1. A topological space X is said to be
(1) S-closed (Thompson, 1976) if for every semi-open cover

{V?‡α∈∇ }of X, there exists a finite subset ∇ °of ∇ such that X = ∪
{Cl(V?‡) α∈∇ °}, equivalently if every regular closed cover of X has a
finite subcover,

(2) nearly compact (Singal & Mathur, 1969) if every regular open
cover of X has finite subcover,

(3) almost compact (Singal & Mathur, 1969) if for every open over
{V?‡α∈∇ } of X, there exists a finite subset ∇ °of ∇ such that X = ∪
{Cl(V?‡)α∈∇ °},

(4) mildly compact (Staum, 1974) if every clopen cover f X has a
finite subcover.
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Remark 5.1. For the spaces defined above, we have the following
implications:
?•-compact ⇒ compact ⇒ nearly compact

⇓
Strongly S-closed ⇒ S-closed ⇒ almost compact ⇒ mildly compact

Theorem 5.2. If f: X→ Y is contra-?á-continuous ?á-continuous
surjection and X is an S-closed space, then Y is compact.

Proof. Let{V?‡α∈∇ }be any open cover of Y. Then{f -1(V?‡)α∈∇ )} is
a cover of X. Since f is contra-?A-continuous ?A-continuous, f -1(V?‡) is ?A-
closed and ?Î-open in X for each α∈∇ . This implies that {f -1(V?‡)α∈∇ )}
is a regular closed cover of the S-closed space X. We have
X=∪ {f -1(V?‡)α∈∇°} for some finite ∇° of ∇ . Since f is surjective,
Y = ∪ {V?‡α∈∇°). This shows that Y is compact.

Corollary 5.2. (Dontchev, 1996). Contra-continuous ?º-continuous
images of S-closed spaces are compact.

Theorem 5.3. If f: X→ Y is contra-?�-continuous precontinuous
surjection and X is mildly compact, then Y is compact.

Proof. Let {V?‡α∈∇ }be any open cover of Y. Since f is contra-? -̄
continuous precontinuous, by Theorem 3.4{f -1(V?‡)α∈∇ )} is a clopen
cover of X and there exists a finite subset ∇ °of ∇ such that shows that
Y is compact.

Corollary 5.3. (Dontchev 1996). The image of an almost compact
space under contra-continuous, nearly continuous (= precontinuous)
function is compact.

6. Connected spaces
Theorem 6.1. Let X be connected and Y be T1. If f: X→ Y is contra-?q-
continuous, then f is constant.
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Proof. Since Y is T1- space, Ω = {f -1({y}) | y∈Y} is a disjoint ?)-
open partition of X. If Ω ≥ 2, then there exists a proper ?²-open ?²-
closed set W. By Lemma 3.4, W is clopen in the connected space X.
This is a contradiction. Therefore Ω = 1 and hence f is constant.

Corollary 6.1. (Dontchev and Noiri, 1999). Let X be connected and
Y be T1. If f: X→ Y is contra-continuous, then f is constant.

Theorem 6.2. If f: X→ Y is a contra-?®-continuous precontinuous
surjection and X is connected , then Y has an indiscrete topology.

Proof. Suppose that there exists a proper open set V of Y. Then,
since f is contra-?
-continuous precontinuous, f -1(V) is ?
-closed and
preopen in X. Therefore, by Lemma 3.4 f -1(V) is clopen in X and
proper. This shows that X is a connected which is a contradiction.

Theorem 6.3. If f: X→ Y is contra-?g-continuous surjection and X is
connected, then Y is connected.

Proof. Suppose that Y is not connected. There exist nonempty
disjoint open sets V1 and V2 such that Y = V1 ∪ V2. Therefore, V1 and
V2 are clopen in Y. Since f is contra-? -̃continuous, f -1(V1) and f -1(V2)
are ?ª-closed and ?ª-open in X and hence clopen in X by Lemma 3.4.
Moreover, f -1(V1) and f -1(V2) are nonempty disjoint and X= f -1(V1) ∪ f
-1(V2). This shows that X is not connected.
A space (X, 	) is said to be hyperconnected (Steen & Seebach, 1970) if
the closure of every open set is the entire set X. It is well-known that
every hyperconnected space is connected but not conversely.

Remark 6.1. In Example 2.1, (X, 	) is hyperconnected and
f: (X, 	)→ (X, σ) is a contra-? -̧continuous surjection, but (X, σ) is not
hyperconnected. This shows that contra-?Ê-continuous surjection do
not necessarily preserve hyperconnectedness.

A function f: X→ Y is said to be weakly continuous (Levine, 1961) if
for each point x∈X and each open set V of Y containing f(x), there
exists an open set U containing x such that f(U) ⊂ Cl(V). It is shown in
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(Noiri, (1974), Theorem 3] that if f: X→ Y is a weakly continuous
surjection and X is connected , then Y is connected. However, it turns
out that contra-?Œ-continuity and weak continuity are independent of
each other. In Example 2.1, the function f is contra-?�-continuous but
not weakly continuous. The following example shows that not every
weakly continuous function is contra-?,-continuous.

Example 6.1. Let X = {a, b, c, d} and 	= {∅ , X, {b}, {c}, {b, c},
{a, b}, {a, b, c}, {b, c, d}}. Define a function f: (X, 	)→ (X, 	) as
follows: f(a) = c, f(b) = d, f(c) = b and f(d) = a. Then f is weakly
continuous (Neubrunnova, 1980). However, f is not contra-?
-
continuous since {a} is a closed set of (X, 	) and f -1({a})= {d} is not
?�-open in (X, 	).
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