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Abstract 

This article focuses on the estimation of population proportion when the study 
variable is sensitive in nature. Two implicit randomized response techniques are 
proposed where the unrelated trait can be chosen subjectively. In addition to 
unbiased estimation of population proportion and variance, an empirical study is 
conducted to inspect the relative efficiency facet of the proposed techniques. The 
cases of positive binomial and negative binomial sampling are also studied. The 
proposed techniques are exposed to be better at the job than the accustomed 
randomized response dealings in binomial sampling. Further, it is established that 
negative binomial sampling may result in more precise estimation of population 
proportion using the proposed techniques. 
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Introduction 

Survey techniques are applied more or less in every 
field of scientific and social studies ranging from 
physical sciences to economics, from business studies to 
bioinformatics, from educational behaviors to reliability 
engineering etc. Collection of unswerving information 
has come out as an exigent concern in socio-economic 
and behavioral studies reason being making dependable 
and compelling inferences primarily depends upon the 
dependability of the data. Warner [32], for the first time 
considered this concern and projected an inventive and 
original technique, called Randomized Response 
Technique (RRT), to elicit truthful data for estimating 
proportion of a sensitive trait. Warner’s method consists 
of two randomized questions pertaining to the 
possession of a sensitive attribute A  or its non-sensitive 
complement A . The idea of randomizing the response 

was further improved by Greenberg et al. [10] to the use 
of unrelated trait, say Y , where a selected respondent is 
asked about the possession of A  or Y . For a review of 
a rich amount of available literature on RRT one can 
refer to Fox and Tracy [8], Chaudhuri and Mukerjee [6] 
and Tracy and Mangat [31]. Variants of Warner’s RRT 
have been suggested by a number of researchers. 
Greenberg et al. [10], Kuk [17], Mangat and Singh 
[21,22], Mangat [20], Mangat et al. [23], Mangat et al. 
[24], Mahmood et al. [19], Bhargava and Singh [4], 
Singh et al. [28], Singh et al. [30], Chang and Huang 
[5], Gupta et al. [11], Christofides [7], Kim and Warde 
[18], Huang [14] and Hussain et al. [15] Hussain and 
Shabbir [16] are some of the many to be cited. It has 
been reported by Huang [14] that accustomed RRTs 
have some limitations. For example, some respondents 
may refuse to answer at all because the statements in a 
given randomized response techniques are essentially 
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direct questions about the possession of a sensitive trait. 
In the forced response model some respondents may 
feel embarrassed to report simply a yes response. In the 
unrelated question randomized response models there is 
a requirement of two independent sub-samples and 
optimal allocation of sample size into two sub-samples 
depends upon the unknown value of  . Further, the 
relative efficiency is related to the values of Y  as it 

requires to have Y  on the same side of 0.5 as is the  . 

The maximum efficiency is achieved when 0.5Y   is 

maximum. In practice, it is difficult to have such an 
unrelated attribute Y  for which 0.5Y   is a 

maximum. Also, because   is unknown, the selection 
of unrelated attribute becomes more difficult. 

In many practical situations, generally, multiple 
sensitive items are studied. It may happen that some of 
the items are very rare (abundant) with very small 
(large) population proportions. For such items the 
probability of a yes response through a given RRT turns 
out to be very small (large). Obviously, in these 
situations we may have a small (large) number of yes 
responses which is not desirable from privacy point of 
view. For example, in a psychological/medical study the 
number of patients who evade tax may be very small. In 
such cases the probability of having an estimate outside 
the [0,1] interval is increased. To avoid such cases, 
Mangatand Singh [21] suggested applying negative 
binomial sampling with Warner [32] RRT. Singh and 
Mathur [29] extended the study by Mangat and Singh 
[21] and suggested several upper bounds on the variance 
of the estimator. The application of negative binomial 
sampling to unrelated trait RRTs cannot be found in 
literature. Moreover, through many studies, it has been 
established that unrelated trait RRTs perform relatively 
better (see Greenberg et al. [10], Mahmood et al. [19], 
and Huang [14], etc.). Therefore, the problem of 
studying the unrelated trait RRTs becomes more 
apparent and demanding. In this paper, we study the 
unrelated trait RRTs and improve them further by using 
negative binomial sampling. 

The contribution of this paper is twofold in the sense 
that we suggest two new unrelated trait RRTs and study 
their performance under binomial and negative binomial 
sampling methods. There are two adavantages of the 
proposed RRTs: we do not need the two subsamples, 
and the unrelated trait may be chosen arbitrarly. Also, 
the proposed randomized response procedures 
circumvent the difficulties pointed out by Huang [14]. 
Iin addition, proposed estimators yeild a moderate 
number of yes responses to maintain privacy and 
consequently obtaining an estimate in the interval [0,1]. 

Further, three upper bounds of the variances of the 
proposed estimators are also given and compared with 
each other along with the exact variance. The proposed 
techniques are studied using binomial sampling and 
compared with that of Mangat et al. [21], Mahmood et 
al. [19] and Bhargava and Singh [4] randomized 
response techniques. The proposed techniques are also 
studied using negative binomial sampling and then 
comparison of positive and negative binomial sampling 
methods is made for some values of the design 
parameters. 

The organization of the paper is as follows. In 
sections 2 and 3, we present the proposed techniques 
assuming binomial and negative binomial sampling 
designs. Comparisons are made in section 4 followed by 
conclusion in section 5. 

The Proposed Techniques Assuming Binomial 
Sampling 

This section presents two new techniques for 
estimating the population proportion of a sensitive 
attribute. 

Technique I 
Consider a dichotomous population U = 

 1 2, ,..., Nu u u  in which every iu  can be classified 

either to a sensitive group A  or to its compliment, A . 
The focus of the study lies in the estimation of the 
population proportion of the 'iu s  which are actually 

classified in the sensitive group A . Let Y  be an 
unrelated trait. In the proposed technique a simple 
random sample of size n  is drawn with replacement 
from the population. The proposed procedure consists of 
two types of statements. With probability 1p  the 

respondent is asked to answer to the statement (a) “I 
possess both the attributes A  and Y ” and with 
probability  11 p  to answer (b) “I posses the attribute 

A  and do not possess the attribute Y ”. The statement 
randomly selected by the interviewee is unseen to the 
surveyor. Let  .P  be the probability of a particular 

eventthen  P A  . Through the suggested technique, 

the probability of obtaining a yes answer is given by 

       1 1 11 cp P A Y p P A Y       

        1 1 11 2 1p P A p P A Y      . (1) 

Now form (1) it is obvious that to have probability of 
yes  1  unconnected to the trait Y  the coefficient of 
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 P A Y  must be zero, which will be the case when 

1 0.5p  . Consequently, we have 

1

1

2
  . (2) 

Using (2) and method of moments, an unbiased 
estimator of   is proposed as 

1 1̂ˆ 2  , (3) 

Where 1
1̂

n

n
   and 1n  is the number of yes responses 

in the sample. 
The variance of 1̂  is given by 

   1 1
1

4 1
ˆVar

n

 



 . (4) 

Substituting the value of  1  from (2) in (4) we get 

     
1

4 1
2 12 2ˆVar

n n n n

 
    

            , (5) 

which is unbiasedly estimated by 

 
 1 1

1

ˆ ˆ4 1
ˆ ˆ

1
Var

n

 






. (6) 

Technique II 
The second technique works in a similar manner as 

the first one except a minor difference in the statements. 
The statements, in the Technique II are: (c) “I Possess 
the attribute Y  and do not possess the attribute A ” and 
(d) “ I do not possess both the attributes A  and Y ”. 
The rest of the things in Techniques I and II are 
identical. Now, the probability of a yes answer is given 
by 

       2 2 21c c cp P A Y p P A Y       

         2 2 21 1 2 1 cp P A p P A Y       .(7) 

As in the Technique I, to have 2  unconnected to 

the attribute Y , the coefficient of  cP A Y  must be 

zero, which is the case when 2 0.5p  . As a 

consequence 2  is given by 

    2 21 1p P A    =   0.5 1  . (8) 

From (8), we have 

20.5

0.5





 . (9) 

Thus using (9) and moment method of estimation, 
we have an unbiased estimator of the population 
proportion given by 

2
2

ˆ0.5
ˆ

0.5





 , (10) 

with variance, given by 

       2 2
2

4 1 1 1
ˆVar

n n n

    


  
   . (11) 

An unbiased estimator of   2ˆVar   is given by 

 
 2 2

2

ˆ ˆ4 1
ˆ ˆ

1
Var

n

 






. (12) 

Proposed Techniques Assuming Negative Binomial 
Sampling 

From (2) it is obvious that when the population 
proportion   is very small (which may be the case in 
most of practical situations) the value of 1  will be 

small and 2  will be large. For such cases, the number 

of yes responses in the sample will be small for not so 
large n . However, having a small number of yes 
responses may not be desirable from practical point of 
view. In order to avoid this we may use negative 
binomial sampling where sampling is continued until a 
fixed number m  of yes responses are obtained. Here the 
sample size n  is not fixed in advance. By considering 
the two techniques discussed above, using negative 
binomial sampling, unbiased estimators of   are 
defined as given in (2) and (10) but here 

1ˆ ,   1, 2.
1j

m
j

n
 

 


 To derive the variance of these 

two estimators under negative binomial sampling we 
use the following lemma as given in the Best [2]. 

 

Lemma 3.1: If  ˆ ~  ,Negative Binomial m   then 

    

 
   

2

1

2

ˆ 1 1

1
1 log .

1 1

t t mm
m

e
t

E m

m t

 

  
 





  

                      


 (13) 

Thus, the variances of the estimators now becomes 
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 

    
 

 

1

2

2

ˆ

4
1

1 1
1

1 log .
1

j

tt
m

j
j

t j

m

m j
e j j

j

Var

m
m t









 









                 

           

  (14) 

It is to be noted that for the existence of variance 
expression in (14) we must fix 2m  . It is obvious 
from (14) that as m  increases it becomes tedious to 
have a numerical value of the variances through (14). 
However, following Sathe [27], Pathak and Sathe [25] 
and Sahai [26] different upper bound of the variances in 
(14) can be found. 

Sathe [27] reported following upper bound for the 
variance of negative binomial estimator 

 
 

      

1

2

2

ˆ

2 1
.

2 1 2 1 4 1

UBV

m m



 

   





      

 (15) 

Sahai [26] derived the upper bound for variance of 
the negative binomial estimator as given by 

  2
2

ˆ 12
6

UBV A m B A
m

     
, (16) 

where 

      
 

2

2 6 1
3 1 3 1

1
A m m

m


  

 
      

  
 

and 

 
       

1
1 2 1

1

m
B m

m
 

       
  

. 

The upper bound for the variance due to Pathak and 
Sathe [25] is given by 

     
 

2

3

1 2 1ˆ 1
2

UBV
m m

  


 
 


 

 

        0.52

12 1

2 3 2 5 4 16 1m m m

 

   




 
          

.(17) 

Thus using (15), (16) and (17) in (14) the different 

upper bounds of the variance of unbiased estimators of 
π obtained through Techniques 1 and 2 are now given by 

 

 
      

1

2

2

ˆ

8 1

2 1 2 1 4 1

j

j j

j j j j

UBV

m m



 

   





      

, (18) 

  2
2

4
ˆ 12

6
j

j j j j jUBV A m B A
m


      , (19) 

where jA  and jB ,  1,2j   are defined as earlier, and 

     
 

2

3

4 1 2 1
ˆ 1

2

j j j

jUBV
m m

  


 
 


 

 
        0.52

12 1

2 3 2 5 4 16 1

j j

j j j jm m m

 

   




          

 

.(20) 

It is to be mentioned that the values of the exact 
variance of the estimator 2̂  and its different upper 

bounds are calculated numerically for different values 
of   and are given in the Table 1 (similarly, the upper 
bounds on the variance of 1̂  can be calculated). From 

Table 1, it is observed that for 0.01   and 0.05 , all 

the three upperbounds  1 2ˆ ,UBV    2 2ˆUBV   and 

 3 2ˆUBV   are exactly equal to the actual variance ,

 2ˆVar  , over a wide range of m . For 0.1  , and 

12m  ,  1 2ˆUBV   and  2 2ˆUBV   are equal to the 

actual variance followed by  1 2ˆUBV  . For 0.1   

and 12 25m   all the three upperbounds are equal to 
actual variances. When 0.15   and 25m   all the 
upperbounds are equal to true variance. When 
5 25m  ,  2 2ˆUBV   is closer to the true variance 

followed by  1 2ˆUBV   and  3 2ˆUBV  . Similarly 

when 0.2,  0.25  ,  2 2ˆUBV   is closer to the true 

variance followed by  1 2ˆUBV   and  3 2ˆUBV  . From 

the above observation a general conclusion can be made 
that for 0.01 0.25   and 5 25m  ,  2 2ˆUBV   is 

the best approximation of the  2ˆVar   compared to 

 1 2ˆUBV   and  3 2ˆUBV  . Therefore, to calculate the 

true variance and relative efficiency of 2̂ ,  2 2ˆUBV   

may be used in practice. 
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Table 1. Values of exact variance of 2̂  under negative binomial sampling and its upper bounds for different values of   and m  

 π = 0.01 π = 0.05 
m Var( ̂ ) UBV1( ̂ ) UBV2( ̂ ) UBV3( ̂ ) Var( ̂ ) UBV1( ̂ ) UBV2( ̂ ) UBV3( ̂ ) 
5 0.000033 0.000033 0.000033 0.000033 0.000793 0.000797 0.000795 0.000788 
6 0.000025 0.000025 0.000025 0.000025 0.000600 0.000601 0.000600 0.000601 
7 0.000020 0.000020 0.000020 0.000020 0.000482 0.000482 0.000482 0.000483 
8 0.000017 0.000017 0.000017 0.000017 0.000402 0.000403 0.000402 0.000403 
9 0.000014 0.000014 0.000014 0.000014 0.000345 0.000346 0.000345 0.000346 
10 0.000012 0.000012 0.000012 0.000012 0.000303 0.000303 0.000303 0.000303 
11 0.000011 0.000011 0.000011 0.000011 0.000269 0.000269 0.000269 0.000269 
12 0.000010 0.000010 0.000010 0.000010 0.000242 0.000242 0.000242 0.000243 
13 0.000009 0.000009 0.000009 0.000009 0.000220 0.000221 0.000220 0.000221 
14 0.000008 0.000008 0.000008 0.000008 0.000202 0.000202 0.000202 0.000202 
15 0.000008 0.000008 0.000008 0.000008 0.000187 0.000187 0.000187 0.000187 
16 0.000007 0.000007 0.000007 0.000007 0.000173 0.000173 0.000173 0.000174 
17 0.000007 0.000007 0.000007 0.000007 0.000162 0.000162 0.000162 0.000162 
18 0.000006 0.000006 0.000006 0.000006 0.000152 0.000152 0.000152 0.000152 
19 0.000006 0.000006 0.000006 0.000006 0.000143 0.000143 0.000143 0.000143 
20 0.000006 0.000006 0.000006 0.000006 0.000135 0.000135 0.000135 0.000135 
21 0.000005 0.000005 0.000005 0.000005 0.000128 0.000128 0.000128 0.000128 
22 0.000005 0.000005 0.000005 0.000005 0.000122 0.000122 0.000122 0.000122 
23 0.000005 0.000005 0.000005 0.000005 0.000116 0.000116 0.000116 0.000116 
24 0.000005 0.000005 0.000005 0.000005 0.000111 0.000111 0.000111 0.000111 
25 0.000004 0.000004 0.000004 0.000004 0.000106 0.000106 0.000106 0.000106 

π = 0.1 π = 0.15 
5 0.003025 0.003050 0.003034 0.002975 0.006493 0.006562 0.006517 0.006324 
6 0.002299 0.002311 0.002304 0.002309 0.004940 0.004995 0.004974 0.004993 
7 0.001855 0.001859 0.001856 0.001863 0.004017 0.004031 0.004020 0.004044 
8 0.001553 0.001555 0.001553 0.001559 0.003370 0.003378 0.003371 0.003390 
9 0.001335 0.001337 0.001335 0.001340 0.002902 0.002907 0.002903 0.002916 
10 0.001171 0.001172 0.001171 0.001174 0.002548 0.002551 0.002548 0.002558 
11 0.001043 0.001043 0.001043 0.001045 0.002270 0.002273 0.002271 0.002278 
12 0.000940 0.000940 0.000940 0.000942 0.002047 0.002049 0.002048 0.002054 
13 0.000855 0.000856 0.000855 0.000857 0.001864 0.001866 0.001864 0.001869 
14 0.000785 0.000785 0.000785 0.000786 0.001711 0.001712 0.001711 0.001715 
15 0.000725 0.000725 0.000725 0.000726 0.001581 0.001582 0.001581 0.001584 
16 0.000673 0.000674 0.000673 0.000674 0.001470 0.001470 0.001470 0.001472 
17 0.000629 0.000629 0.000629 0.000630 0.001373 0.001373 0.001373 0.001375 
18 0.000590 0.000590 0.000590 0.000590 0.001288 0.001288 0.001288 0.001290 
19 0.000555 0.000555 0.000555 0.000556 0.001213 0.001213 0.001213 0.001214 
20 0.000525 0.000525 0.000525 0.000525 0.001146 0.001146 0.001146 0.001147 
21 0.000497 0.000497 0.000497 0.000498 0.001086 0.001087 0.001086 0.001087 
22 0.000473 0.000473 0.000473 0.000473 0.001033 0.001033 0.001033 0.001033 
23 0.000450 0.000450 0.000450 0.000450 0.000984 0.000984 0.000984 0.000985 
24 0.000430 0.000430 0.000430 0.000430 0.000939 0.000939 0.000939 0.000940 
25 0.000411 0.000411 0.000411 0.000411 0.000899 0.000899 0.000899 0.000899 

π = 0.2 π = 0.25 
5 0.011016 0.011153 0.011058 0.010647 0.016429 0.016656 0.016493 0.015815 
6 0.008314 0.008528 0.008484 0.008528 0.012073 0.012791 0.012714 0.012801 
7 0.006871 0.006900 0.006876 0.006931 0.010324 0.010376 0.010334 0.010434 
8 0.005773 0.005793 0.005779 0.005820 0.008678 0.008726 0.008700 0.008777 
9 0.004981 0.004991 0.004982 0.005013 0.007509 0.007527 0.007511 0.007567 
10 0.004377 0.004384 0.004378 0.004401 0.006605 0.006618 0.006607 0.006649 
11 0.003904 0.003909 0.003904 0.003922 0.005896 0.005905 0.005897 0.005928 
12 0.003523 0.003526 0.003523 0.003536 0.005323 0.005330 0.005324 0.005348 
13 0.003209 0.003212 0.003210 0.003220 0.004852 0.004857 0.004852 0.004871 
14 0.002947 0.002949 0.002947 0.002955 0.004457 0.004461 0.004458 0.004473 
15 0.002724 0.002726 0.002724 0.002731 0.004122 0.004125 0.004122 0.004134 
16 0.002533 0.002534 0.002533 0.002538 0.003833 0.003836 0.003833 0.003843 
17 0.002366 0.002367 0.002367 0.002371 0.003583 0.003584 0.003583 0.003591 
18 0.002221 0.002221 0.002221 0.002224 0.003362 0.003364 0.003363 0.003369 
19 0.002092 0.002092 0.002092 0.002095 0.003168 0.003169 0.003168 0.003174 
20 0.001977 0.001977 0.001977 0.001980 0.002995 0.002996 0.002995 0.003000 
21 0.001874 0.001875 0.001874 0.001876 0.002839 0.002840 0.002839 0.002843 
22 0.001781 0.001782 0.001781 0.001783 0.002699 0.002700 0.002699 0.002703 
23 0.001697 0.001698 0.001697 0.001699 0.002572 0.002573 0.002572 0.002576 
24 0.001621 0.001621 0.001621 0.001623 0.002457 0.002457 0.002457 0.002460 
25 0.001551 0.001551 0.001551 0.001553 0.002351 0.002352 0.002351 0.002354 
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Now we study the relative efficiency features of the 
proposed techniques relative to some usual randomized 
response techniques. 

Efficiency Comparisons and Discussion 

We, now, compare the proposed RRTs under the two 
cases of sampling, namely, binomial and negative 
binomial sampling. 

(a) Case of Binomial Sampling 
(i) 1̂  versus 2̂  

The proposed estimator 1̂  will be relatively more 

efficient than the second proposed estimator 2̂  if 

   1 2ˆ ˆVar Var  . (21) 

Using (5) and (11) in (21) we see that the inequality 
(21) holds when 0.5  , which implies that the 1̂  will 

be more precise as compared to 2̂  for 0.5  . On the 

other hand, 2̂  will be more efficient than 1̂  when 

0.5  . It is quite clear that the two estimators 1̂  and 

2̂  will be equally good at 0.5  . 

(ii) Proposed estimators ( 1̂  and 2̂ ) versus 

Mahmood et al. estimator 
We compare our proposed estimators 1̂  and 2̂  

with the Mahmood et al. [19] estimator depending upon 
the value of the population proportion  . Mahmood et 
al. [19] actually presented three estimators and indicated 
one as the best of them. We take this best one for our 
comparison purposes. The minimum variance 
expression of the Mahmood et al. [19] estimator , say 

3̂ , is given by 

 

   
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where  3 1 2 31 Y Yp p p       , and 1p , 2p , 3p  

are pre-assigned probabilities of randomly selecting the 
statements concerning the possession of A , cY , and 
Y , respectively. An empirical study is undertaken to 
see the variation in extent of relative efficiency by 
fixing the practicable values of the parameters. The 
Relative Efficiency (RE) of the proposed estimators 
with respect to Mahmood et al. [19] procedure is 
defined as 

 
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We have chosen 1 0.5p   and values of 3p  are 

taken as  11 9,   1,2,3,4i p i    against the whole 

range of  . It is observed that for 

 3 11 9, 5,6,7,8p i p i     the values of 1RE  are 

the mirror image of the values when 1,2,3,4i  . 
Therefore, for the sake of brevity, we have not provided 
the values of 1RE  for 1,2,3,4i  . The values of 1RE  

are presented in Table 2 which clearly shows the better 
performance of the proposed estimators as compared to 
the Mahmood et al. [19] procedure. It is observed that 
for a fixed value of Y  the 1RE  decreases when 

0.5   increases. Also, 1RE  increases, for fixed 

values of Y  and  , if 3 0.5p   increases. The 

magnitude of 1RE  ranges from 1.42 to 9.25. 

(iii) Proposed estimators versus Mangat et al. and 
Bhargava and Singh estimators 

The variance expression of Mangat et al. [23] 
estimator, say 4̂ , is given by 

   
 

 
 
2 23

4 2
1 2 1 2

1 1
ˆ

p pp
Var

n n p p n p p

  


 
  

 
, (23) 

where 1p  and 2p  are the pre-assigned probabilities of 

choosing a question concerning the membership in A , 
cA  and 3p  proportion of the sampled respondents are 

requested to say just no. The variance of Bhargava and 
Singh [4] estimator, say 5̂ , is given by 

   
 

 
 

1 13
5 2

1 2 1 2

1 1
ˆ

p pp
Var

n n p p n p p

  


 
  

 
, (24) 

where 1p  and 2p  are same as that of Mangat et al. [23] 

procedure, and 3p  is the probability of reporting just a 

yes answer. 
It has been reported by Bhargava and Singh [4] that 

their estimator is better than Mangat et al. [23] estimator 
if 0.5  . So we have defined the RE of our proposed 
estimators depending upon the values of the  . When 

0.5  , we compare our second estimator 2̂  with 

Bhargava and Singh [4] estimator, 5̂ . Otherwise, we 

compare 1̂  with 4̂ . That is, the RE of the proposed 
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Table 2. The values of 1RE  of the estimators 1̂  and 2̂  with respect to 3̂  

Y    

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

p
3
 = 1/8 

0.1 7.95 4.22 2.95 2.29 1.86 2.04 2.34 2.91 4.61 

0.3 9.25 5.03 3.60 2.86 2.40 2.73 3.26 4.31 7.42 

0.5 8.96 5.00 3.67 2.99 2.57 2.99 3.67 5.00 8.96 

0.7 7.42 4.31 3.26 2.73 2.40 2.86 3.60 5.03 9.25 

0.9 4.61 2.91 2.34 2.04 1.86 2.29 2.95 4.22 7.95 

p
3
 = 2/8 

0.1 6.96 3.76 2.66 2.09 1.73 1.93 2.25 2.88 4.74 

0.3 7.73 4.24 3.06 2.45 2.07 2.37 2.84 3.77 6.53 

0.5 7.50 4.21 3.10 2.53 2.17 2.53 3.10 4.21 7.50 

0.7 6.53 3.77 2.84 2.37 2.07 2.45 3.06 4.24 7.73 

0.9 4.74 2.88 2.25 1.93 1.73 2.09 2.66 3.76 6.96 

p
3
 = 3/8 

0.1 5.95 3.27 2.36 1.88 1.58 1.79 2.13 2.78 4.70 

0.3 6.31 3.51 2.56 2.07 1.76 2.02 2.44 3.25 5.66 

0.5 6.17 3.48 2.57 2.10 1.81 2.10 2.57 3.48 6.17 

0.7 5.66 3.25 2.44 2.02 1.76 2.07 2.56 3.51 6.31 

0.9 4.70 2.78 2.13 1.79 1.58 1.88 2.36 3.27 5.95 

p
3
 = 4/8 

0.1 4.93 2.77 2.04 1.66 1.42 1.63 1.97 2.62 4.54 

0.3 5.02 2.84 2.10 1.71 1.47 1.70 2.06 2.76 4.82 

0.5 4.97 2.83 2.10 1.72 1.48 1.72 2.10 2.83 4.97 

0.7 4.82 2.76 2.06 1.70 1.47 1.71 2.10 2.84 5.02 

0.9 4.54 2.62 1.97 1.63 1.42 1.66 2.04 2.77 4.93 

 
 

Table 3. The values of 2RE  of the estimators 1̂  and 2̂  with respect to 4̂  and 5̂  

p
3
   

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1/18 81.80 84.33 88.91 96.23 107.66 96.23 88.91 84.33 81.80 

2/18 20.44 21.05 22.15 23.91 26.66 23.91 22.15 21.05 20.44 

3/18 9.08 9.33 9.79 10.52 11.66 10.52 9.79 9.33 9.08 

4/18 5.10 5.23 5.46 5.83 6.41 5.83 5.46 5.23 5.10 

5/18 3.26 3.33 3.46 3.66 3.98 3.66 3.46 3.33 3.26 

6/18 2.26 2.30 2.37 2.48 2.66 2.48 2.37 2.30 2.26 

7/18 1.66 1.68 1.71 1.77 1.87 1.77 1.71 1.68 1.66 

9/18 1.26 1.27 1.29 1.31 1.35 1.31 1.29 1.27 1.26 
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Table 4. The values of RE of proposed estimator 2̂  under negative binomial sampling relative to binomial sampling for different 

values of n, π and m 

 n = 25 n = 35 

m π = 0.01 π = 0.05 π = 0.1 π = 0.15 π = 0.01 π = 0.05 π = 0.1 π = 0.15 

5 1.065 1.065 2.512 1.709 17.228 3.511 1.794 1.221 

6 1.450 1.450 3.306 2.247 22.933 4.647 2.362 1.605 

7 1.695 1.695 4.098 2.763 28.643 5.785 2.927 1.974 

8 2.017 2.017 4.894 3.294 34.354 6.925 3.496 2.353 

9 2.331 2.331 5.692 3.825 40.067 8.066 4.066 2.732 

10 2.649 2.649 6.490 4.357 45.780 9.208 4.636 3.112 

11 2.968 2.968 7.289 4.889 51.493 10.350 5.207 3.492 

12 3.287 3.287 8.088 5.421 57.206 11.492 5.777 3.872 

13 3.607 3.607 8.887 5.954 62.920 12.634 6.348 4.253 

14 3.926 3.926 9.687 6.487 68.634 13.776 6.919 4.633 

15 4.246 4.246 10.486 7.019 74.348 14.919 7.490 5.014 

16 4.565 4.565 11.286 7.552 80.062 16.061 8.061 5.394 

17 4.885 4.885 12.085 8.085 85.775 17.204 8.632 5.775 

18 5.205 5.205 12.885 8.618 91.489 18.347 9.204 6.156 

19 5.524 5.524 13.685 9.151 97.204 19.489 9.775 6.537 

20 5.844 5.844 14.484 9.684 102.918 20.632 10.346 6.917 

21 6.164 6.164 15.284 10.217 108.632 21.775 10.917 7.298 

22 6.484 6.484 16.084 10.750 114.346 22.917 11.489 7.679 

23 6.803 6.803 16.884 11.284 120.060 24.060 12.060 8.060 

24 7.123 7.123 17.684 11.817 125.774 25.203 12.631 8.441 

25 7.443 7.443 18.483 12.350 131.488 26.345 13.202 8.821 

  

n = 50 n = 100 

5 12.059 2.458 1.256 0.855 6.030 1.229 0.628 0.427 

6 16.053 3.253 1.653 1.124 8.027 1.626 0.827 0.562 

7 20.050 4.049 2.049 1.382 10.025 2.025 1.024 0.691 

8 24.048 4.848 2.447 1.647 12.024 2.424 1.224 0.823 

9 28.047 5.646 2.846 1.912 14.023 2.823 1.423 0.956 

10 32.046 6.445 3.245 2.178 16.023 3.223 1.623 1.089 

11 36.045 7.245 3.645 2.444 18.022 3.622 1.822 1.222 

12 40.044 8.044 4.044 2.711 20.022 4.022 2.022 1.355 

13 44.044 8.844 4.444 2.977 22.022 4.422 2.222 1.488 

14 48.044 9.644 4.843 3.243 24.022 4.822 2.422 1.622 

15 52.043 10.443 5.243 3.510 26.022 5.222 2.622 1.755 

16 56.043 11.243 5.643 3.776 28.022 5.621 2.821 1.888 

17 60.043 12.043 6.043 4.043 30.021 6.021 3.021 2.021 

18 64.043 12.843 6.442 4.309 32.021 6.421 3.221 2.155 

19 68.042 13.642 6.842 4.576 34.021 6.821 3.421 2.288 

20 72.042 14.442 7.242 4.842 36.021 7.221 3.621 2.421 

21 76.042 15.242 7.642 5.109 38.021 7.621 3.821 2.554 

22 80.042 16.042 8.042 5.375 40.021 8.021 4.021 2.688 

23 84.042 16.842 8.442 5.642 42.021 8.421 4.221 2.821 

24 88.042 17.642 8.842 5.908 44.021 8.821 4.421 2.954 

25 92.042 18.442 9.242 6.175 46.021 9.221 4.621 3.087 
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estimators relative to Mangat et al. [23] and Bhargava 
and Singh [4] estimators is defined as 
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To find the numerical values of 2RE  of the 

proposed estimators, same values of the parameters are 
taken as that were fixed in calculating 1RE . The values 

of 2RE  are not affected by the different values of Y . 

The values of 2RE  obtained without using the 

parameter Y  are presented in Table 3. From Table 3, it 

is observed that for a given 3p , 2RE  decreases when 

0.5   increases and 2RE  is maximum when 

0.5  . It is also observed that, over the whole range 
of  , 2RE  decreases when 3p  increases. In general, 

proposed estimators are relatively more efficient than 
the Bhargava [4] and Mangat et al. [23] estimators for 
all the values of   and 3p  fixed in Table 3. 

(b) Case of Negative Binomial Sampling 
To see the effect of sampling design we, now, 

compare thenegative binomial sampling and binomial 
sampling designs using variances of theproposed 
estimator 2̂ . To calculate the RE of the estimator 2̂  

under negative binomial sampling relative to binomial 
sampling we use (11) and (14). The RE results are given 
in Table 4. Form Table 4, it is observed that under 
proposed Technique II, negative binomial sampling is 
more efficient than binomial sampling when the 
population proportion   is small. In particular, for a 
fixed n  and  , RE increases when m  increases. To 
achieve maximum efficiency a larger m  should be 
fixed. 

Results 

Two new randomized response techniques are 
proposed where unrelated characteristic may be chosen 
arbitrarily . These techniques are seen to be more 
efficient than the techniques suggested by Mangat et al. 
[23], Mahmood et al. [19] and Bhargava and Singh [4] 
under binomial sampling (as can be seen from Tables 2 
and 3). In addition to being more precise estimators, the 
proposed estimators do not have the weak points 
associated with the usual RR techniques. To avoid the 
possibility of having an estimate outside the interval 

[0,1] the use of negative binomial sampling is suggested 
and the Technique II is compared under the two types of 
sampling namely binomial and negative binomial. The 
negative binomial sampling is observed as the more 
efficient sampling. Similar results are observed for 
Technique I and therefore are not presented in this 
paper. Moreover, three different upper boundson the 
variance of negative binomial estimator, 2̂ , have been 

studied and it is observed that these upper bounds are 
sufficiently accurate when m  is larger and these can 
serve the purpose of calculating the variance. When m  
is moderate or small the upper bound proposed by Sahai 
[26] may be preferred. To sum up, we conclude that the 
newly suggested estimators are more practicable and 
efficient and can be easily applied in any sensitive 
survey. 
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