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Abstract 
Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources 

management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast 

hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and 

decomposition level in WANN model for groundwater level forecasting. To this end, the monthly groundwater level time series were 

collected from October 1997 to October 2007 in 26 piezometers of Qorveh aquifer, Iran. Using discrete wavelet transform method and 

different mother wavelets (Haar, db2, db3 and db4), these time series were decomposed into sub-signals in various resolution levels. 

Then, these sub-signals entered to the ANN model to reconstruct the original forecasted time series for 6 months ahead. The Root 

Mean Square Errors (RMSE) and coefficient of determination (R2) statistics were used for evaluating the accuracy of the model. The 

results showed merits of db2 and db4 wavelets in comparison with Haar and db3 because of similarity between the signal of 

groundwater level and the functions of mother wavelets. For a better and precise analysis, the forecasted results of the model were 

compared with the observed data not only in the validation stage but also in the test stage. 
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Introduction 

The world’s most areas are categorized as warm 

and arid area because of geographical features and 

climate conditions. In these areas, due to the low 

degree of precipitation, the only way to gain 

potable water and agricultural water is restricted to 

groundwater resources which are done differently 

using aquifer derivation. Therefore any changes in 

these aquifers can influence the inhabitants’ lives; 

or in cases that these changes are drastic, the 

people’s lives might be endangered. For the 

effective management of groundwater, it is 

important to predict groundwater level (GWL) 

fluctuations. 

Many methods and models for dealing with 

groundwater level prediction have been reported 

based on physical considerations or on other 

theories (Yang et al., 2009; Shiri & Kisi, 

2011;Yoon et al., 2011; Mohammadi, 

2008).Typically, physically based numerical 

models are used for characterizing a groundwater 

flow system and predicting the GWL fluctuations. 

These models establish a governing equation 

simplifying the physics of flow in the subsurface 

and solve it with proper initial and boundary 

conditions using numerical methods (Yoon et al., 

2011). Simulating of groundwater level by means 

of numerical models requires various hydrological 

and geological parameters. In these models, 

recognition of boundary conditions, collecting the 

input data, calibration and verification is difficult, 

time consuming and expensive. In addition, 

combination of these models with optimization 

models for finding optimum groundwater 

management scenario needs hundreds of run. 

Different researchers used stochastic theory-based 

models as well as numerical models 

simultaneously. To model a hydrological time 

series, several models have been developed based 

on stochastic theory, such as the Time Series (TS) 

model, the integrated time series (ITS) model 

(Yang et al., 2009), autoregressive moving average 

(ARMA) model (Zhou et al., 2008; Kisi, 2010), the 

seasonal autoregressive moving average (SARMA) 

model (Gemitzi & Stefanopoulos, 2011; Zhou et 

al., 2008), the deseasonalized model, ARMAX 

(Bidwell, 2005), and the periodic autoregressive 

(PAR) model, threshold autoregressive model 

(TAR) (Wang et al., 2009), and Artificial Neural 

Network (ANN), among others (see Ahn, 2000; 

Daliakopoulos et al., 2005; Wong et al., 2007). 

Since hydrogeology, hydrology and water resource 

engineering sciences mostly have non-linear nature 

as well as having complicated design along with the 

inefficiency of physical modeling regarding these 

sciences, Artificial Neural Network has gained 
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warm reception as a new perspective in this field. 

In general the advantages of ANNs over other 

statistical and conceptual models are: 

The application of ANNs does not require a prior 

knowledge of the process because ANNs have 

black-box properties. 

ANNs have the inherent property of nonlinearity 

since neurons activate a nonlinear filter called an 

activation function. 

ANNs can have multiple input having different 

characteristics, which can make ANNs able to 

represent the time-space variability. 

ANNs have the adaptability to represent change 

of problem environments(Rahnama & Noury, 2008; 

Nourani et al., 2009). 

Artificial Neural Networks have been widely 

studied in water resources management and 

planning issues like simulation of quantitative and 

qualitative variables, rainfall-runoff models, 

groundwater level fluctuation forecasting and flow 

and rainfall forecasting. Artificial Neural Networks 

were utilized by Aziz &Wong(1992) to estimate 

aquifer parameters of groundwater. Lallahem et al. 

(2005) used ANN to assess water table in fractured 

media. Arguing that ANNmodels were more 

accurate than numerical models (in this case 

MODFLOW) for groundwater level forecasting, 

Mohammadi (2008) showed that major 

shortcoming of numerical models are the large 

number of input parameters as well as being time 

consuming. 

In spite of suitable flexibility of ANN in modeling 

hydrologic time series, sometimes there is a 

shortage when signal fluctuations are highly non-

stationary and physical hydrologic process operates 

under a large range of scales varying from 1 day to 

several decades. In such a situation, ANNs may not 

be able to cope with non-stationary data if 

preprocessing of the input and/or output data is not 

performed(Nourani et al., 2009). 

Different methods have been proposed to resolve 

the above-mentioned problem among which we can 

refer to wavelet analysis. Wavelet has been defined 

as a small wave whose energy is restricted into a 

short period of time and is an efficient method for 

signals that are non-stationary, and have short-lived 

transient components, features at different scales, 

or singularities(Hsu & Li, 2010).A non-stationary 

signal can be decomposed into a certain number of 

stationary signals by wavelet transform. Then ANN 

is combined with wavelet transform to improve the 

prediction accuracy (Zhou et al., 2008). 

During recent years, wavelet transforms have 

become a useful method for analyzing such as 

variations, periodicities, trends in hydrological time 

series. Labat (2005) reviewed the most recent 

wavelet applications in the field of earth sciences 

and illustrated new wavelet analysis methods in the 

field of hydrology.Partal and Cigizoglu (2008) used 

neuro-wavelet technique for forecasting river daily 

suspended sediment load. Kisi and Cimen (2011) 

used a wavelet-support vector machine conjunction 

model for monthly streamflow forecasting. 

Using WANN to predict groundwater level 

fluctuations is a new and fledgling method so that 

Wang & Ding (2003) andAdamowski & Chan 

(2011) have used this combined model in this field 

of study. Wang & Ding (2003) found that WANN 

models were more accurate than TAR and ARIMA 

models, and further showed that WANN 

modelsprolonged the forecasting time period and 

hydrology and water resource time series. Also 

Adamowski & Chan (2011) have shown that the 

combined model is much more precise than the 

classical models like ANN and ARIMA. 

To the best knowledge of the authors, no study has 

been carried out to predict groundwater table 

fluctuations using mother wavelet types and 

optimum levels of decomposition.In this paper, the 

sensitivity of the pre-processing to the wavelet type 

and decomposition level is examined. To this end, 

the monthly groundwater level time series of 

Qorveh aquifer was decomposed into sub-signals in 

various resolution levels; then these sub-signals 

entered to the ANN model to reconstruct the 

original forecasted time series. 

 

Methods 

Wavelet transforms: 

Wavelet transform (WT), a modern tool of applied 

mathematics, is a signal processing technique that 

has shown higher performance compared to Fourier 

transform and Short Time Fourier Transform in 

analyzing non-stationary signals. These advantages 

are due to its good localization properties in both, 

the time- and frequency domain (Cartas et al., 

2009). The wavelet transform is executed through 

discrete and continuous wavelet transform. The 

continuous wavelet transform changes the signal x 

(t) into 

xCWT wavelet coefficients: 
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Wherein t and s are translation and dilation 

parameters, respectively (Rao & Bopardikar, 1998). 

The translation parameter determines the window 

movement degree and the dilation parameter, 

having a reverse connection with the frequency, 

compresses or stretches signal as a mathematical 

operator. In Formula (1), ψ is mother wavelet 

andψs,τ is defined as following:  
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The wavelet transform is in factthe similarity 

between frequency content of the signal and the 

basic functions (wavelets).Different scales should 

be taken into consideration in the continuous 

wavelet transform and using numerical method, 

resolved the equation integration (1) for each scale. 

Calculating the wavelet coefficient is time 

consuming in all scales and produced huge amount 

of data. In other words, we can say that the 

continuous wavelet transform consists of redundant 

and inefficient sections which are all its weak 

points. 

The discrete wavelet transform has eradicated the 

continuous wavelet transform pitfalls. Meanwhile, 

it is an efficient alternative for the discrete data. In 

DWT, the wavelet transform is just executed for a 

sub-set of scales and positions. If scales and 

positions are selected based on powers of two, so-

called dyadic scales and positions, the signal 

analysis is done quickly and precisely. Executing 

the above-mentioned transform, the raw data are 

divided into approximation (A) and details (D) 

(Fig. 1). The approximation consists of high scale 

and low frequency components of the signal. While 

the details consist of low scale and high frequency 

components of the signal which are obtained from 

low-pass and high-pass filters respectively.  

 

 
Figure 1: Primary wave (x(n)) decomposition to secondary wave of Approximation (cA) and details (cD) 

 

Artificial Neural Network (ANN): 

Artificial neural networks (ANN) are massively 

parallel interconnected networks of simple 

elements and their hierarchical organizations which 

are intended to interact with the objects of the real 

world in the same way as biological nervous 

systems do (Kohonen, 1998). As illustrated in Fig. 

2, feedforward neural networks (FFNNs) are the 

most commonly applied in hydrology due to the 

simple framework that belongs to static networks 

(Banerjee et al., 2011). These neural networks 

consist of an input layer, hidden layer and output 

layer, with each layer including a number of nodes 

or neurons. 

In this network, the input data are fed to input 

neurons, which in turn pass them on to the hidden 
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layer neurons after multiplying by a given weight. 

A hidden layer neuron adds up the weighted input 

received from each input neuron, associates it with 

a bias, and then passes the result on through a 

nonlinear activation function. The output neurons 

do the same operation as that of a hidden 

neuron(Lallahem et al., 2005). Therefore a neuron 

output in a layer depends on the signal received 

from the previous layer, its defined weight and 

activation function type. The linear activation 

function is most commonly applied to the output 

layer, whereas the bipolar sigmoid (tansig) function 

is often used in the hidden layer (Triana et al., 

2010) (Fig. 3). 

 

 
Figure 2: ANN architecture with one hidden layer 

 

 
Figure 3.The linear activation function and the bipolar sigmoid (tansig) activation function 

 

Before its application to any problem, the network 

is first trained, whereby the target output at each 

output neuron is compared with the network output, 

and the difference or error is minimized by 

adjusting the weights and biases through some 

training algorithm (Lallahem et al., 2005). There 

are many algorithms for training network among 

whichthe Levenberg–Marquardt algorithm is often 

characterized as more stable and efficient. Also, 

Coulibaly et al., (2000) point out that it is faster 

and less easily trapped in local minima than other 

optimization algorithms. 

The goal of an ANN model is to generalize a 

relationship of the form:  

Y
m
 = f (X

n
)              (3) 

 

Where X
n
 is an n-dimensional input vector 

consisting of variables x1, ..., xi, ..., xn; while Y
m
 is 

an m-dimensional output vector consisting of the 

resulting variables of interest y1, ...,yi, ..., ym 

(Adamowski & Chan, 2011). 
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Criteria for model performance 

Different statistical criteria are used to assess 

models performance. Such researches proposed that 

a perfect evaluation of model performance should 

include at least one ‘goodness-of-fit’ or relative 

error measure (e.g. coefficient of determination 

(R
2
)) and at least one absolute error measure (e.g. 

Root Mean Square Error (RMSE) or Mean 

Absolute Error (MAE)) (Rajaee, 2011).In this 

study, two different statistical criteria are used in 

order to assess model performance and its ability to 

make precise predictions. 

1. The Root Mean Square Error (RMSE) 

calculated by: 

N
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Where yi is observed data, iŷ  the calculated data 

and N is the number of observations. RMSE 

indicates the discrepancy between the observed 

and calculated values. The lowest the RMSE, 

the more accurate the prediction is. 

2. The coefficient of determination (R
2
) given 

by: 
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Where SSR is Sum of Square regression, SSE is 

Sum of Square Error, SST is Sum of Square 

total and y  is the mean value of observed data. 

The best fit between observed and calculated 

data, which is unlikely to occur, would have 

RMSE=0 and R
2
=1. 

 

Groundwater level fluctuations: 

Groundwater levels change for many reasons. Some 

changes are due to natural phenomena, and others 

are caused by human activities. Water level 

changes can be divided into several categories. 

Fluctuations are generally due to one of the 

following three major factors: 

1- Changes in the volume of water stored in the 

aquifer 

2- Changes in atmospheric pressure 

3- Changes caused by aquifer deformation 

 

Fluctuations due to aquifer storage changes: 

Groundwater is a part of a dynamic flow system 

that moves into and through aquifers from areas of 

high to low water level elevation. Groundwater 

level fluctuations due to aquifer storage changes 

involve both the addition of water to and extraction 

of it from the aquifer (recharge and discharge), 

through natural phenomena and human 

involvement. Precipitation, runoff, return water 

from agriculture and industry, and recharge from 

river, spring, qanat and adjacent aquifers are the 

most important factors that increase groundwater 

level. The main factors that decrease groundwater 

level include: wells pumping for agricultural, 

industrial and potable purposes, evaporation and 

evapotranspiration especially in warm regions 

and/or areas where water table is near the earth 

surface, drainage, and discharge to river, spring, 

qanat and adjacent aquifers. The most significant 

water level changes, due to recharge, generally 

occur during springtime of the year, when 

precipitation is generally greatest and evaporation 

and plant usage rates are low. 
 

Fluctuations due to atmospheric pressure 

changes: changes in atmospheric pressure can 

cause groundwater levels to fluctuate. Moreover, 

atmospheric pressure is caused by the Earth 

gravitational attraction of air in the atmosphere. At 

sea level, the weight of the atmosphere exerts a 

pressure of about 1013.25hPa (hectoPascals) on the 

Earth surface (Singh & Aung, 2005). This is 

equivalent to the pressure exerted by a column of 

mercury that is 76 cm high. 

Changes in barometric pressure causes water levels 

in some wells, penetrating confined or semi 

confined aquifers, to change. That is, an increase in 

air pressure will cause the water level in the well to 

fall, and a decrease in air pressure will cause the 

water level in the well to rise. 
 

Fluctuations due to aquifer deformation: water 

level changes due to aquifer deformation are 

commonly due to either earth tides, or earthquakes. 

Other external stresses caused by heavy trucks and 

trains can also cause groundwater level fluctuations 

in some aquifers. However, these fluctuations are 

generally small and negligible. 

 

Study area and data 

Study area 

Qorveh plain which is located in the west of Iran is 
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selected for this study(between 35º 02′ 22″_ and 

35º 30′ 54″_ North latitude and 47º 38′ 52″_ and 

48º 06′ 03″_ East longitude) (Fig. 4). The recharge 

is a major source of groundwater, as well as 

rainfall, infiltration from two major rivers in the 

area, and return flow from irrigation. The average 

annual rainfall vary between 346 and 480 mm/year 

depending on the location.The annual mean 

temperature is around 12.6°C and varies between -

27°C in December and 38°C in July.According to 

Emberger Climate classification, The Qorveh 

watershed is under the influence of a cold and semi 

arid climate. 

 

 
Figure4: Study area and piezometer position 

 

The Qorveh watershed area is 1063.5 Km
2
 and the 

its aquifer area is 245 Km
2
. The aquifer from south 

leads to Zagros mountains and from north leads to 

Mio-Pliocene formations. The oldest rocks in the 

area include metamorphic rocks of Triassic and 

Triassic-Jurassic complex in the southern part of 

the plain and Mio-Pliocene formations in the 

northern part of it. Triassic complex consists of 

Amphibolite, Orthogneiss, Metagabbro, 

Metadiorite, and Marble. They have a lot of cracks 

and joints and recharge the southern part of the 

aquifer. Triassic-Jurassic complex consists of 

Marble, Qartzite and, in some parts, crystalline 

Limestone and Mica schist. This complex recharges 

the western part of the aquifer through Oriye 

valley. Mio-Pliocene and Quaternary formations as 

almost horizental layers have covered the northern 

half of the plain. The formations are mainly 

composed of clay limestones and early quaternary 

volcanic rocks. In these formations, Pliocene tuffs 

are widely spread over the area. These tuffs have 

high porosity and their water is exploited by semi 

deep wells. Due to interlayers of marl, 

transmissivity of clay limestones is low and, 

accordingly, they play the role of a bedrock in the 

northern part of the aquifer. Maximum and 

minimum value of the aquifer thickness are around 

wells No. 4 and No. 5 (about 120 m) and the 

western part of the aquifer (about 50 m), 

recpectively. Transmissivity is 400 m
2
/day in the 

center of plain, 600 m
2
/day in the southeast of it, 50 

m
2
/day in the north of it (the plain output), and 

about 300 to 400 m
2
/day along Oriye and Vihaj 

valleys. 

Due to the high density of the pumping wells and 

the low reacharge rate in the eastern part of the 

aquifer, as well as the recharges in the western part 

of the aquifer by its limestone and Oriye and Vihaj 

stream, groundwater level fluctuations on either 

sides are not the same. 

Water is the main factor for environmental 

construction and agricultural production in this 

area. Many wells in the region are developed 

illegally, and pumping is unregulated, resulting in 

over exploitation of the aquifer and the 

consequential decrease in groundwater levels over 
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time. This has led to a sharp decline of groundwater 

table and the increase of problems associated with 

exhaustion of the water supply and hence a need for 

predictions of the future trends in the groundwater 

table. 

 

Data 

Groundwater level fluctuations depend on different 

factors such as precipitation, pumping, recharge, 

evapotranspiration, etc.;consequently all these 

factors exist implicitly in groundwater time series. 

Therefore it can be concluded that when wavelet 

decomposition happens wherein time series signal 

is decomposed into basic signals, the effect of all 

the factorsare taken into consideration. For this 

reason, the current study just uses groundwater 

time series as input for WANN. 

The current study used the groundwater level data, 

all obtained of twenty eight piezometer through ten 

years (from October 1997 to October 2007) in 

Qorveh plain. Assessing the data, piezometers No. 

six and seven were deleted from the modeling 

system due to having faults in the data. The 

predictions were all made using data obtained from 

twenty six piezometers.  

 

Model development, result and discussion 

The following study aimed at investigating the 

effects of the used wavelet type as well as 

decomposition level on the model efficiency. To 

achieve this purpose, Groundwater level time series 

should be processed before entering WANN. The 

scale of the input data should be changed before 

use based on the tansig activation function in the 

network hidden layer and the special form of the 

function along with the wavelet features. If we look 

carefully at the form of these functions, it is found 

that their slope is only considerable based on their 

proportion in the interval [-1, 1]. The changes are 

trivial and not worth considering out of this 

interval. All of the previously used data including 

input and output are thus transferred to this interval 

to prevent the saturation of network. Network 

training is done with these data and the forecasted 

valueswill be turned back to the real amount before 

the operations are finalized. There exist a few 

methods to normalize the data among which the 

following formula was conducted (Lallahem et al., 

2005; Zhang et al., 2003): 
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After normalization, the original data was 

decomposed into sub-series using discrete wavelet 

transform. In this transform, determining the 

mother wavelet type and optimum decomposition 

level is of high importance. One of the fundamental 

issues in selecting the mother wavelet is the nature 

of the phenomenon and the type of the time series.  

The functions of the mother wavelet have different 

types. The basic and well-known wavelet is called 

Haar. The biggest problem of Haar wavelet is 

lacking order (disorganization). The wavelets were 

either irregular and with a finite support (like the 

Haar wavelet) or regular and with an infinite 

support. After the work of Daubechies, a method 

was created to produce regular wavelets with a 

finite support which play a crucial role in the most 

applications. Considering the widespread and 

relatively successful use of Haar and Daubechies 

wavelets in hydrological and hydrogeological 

applications (Rajaee, 2011; Nourani et al., 2009; 

Labat et al., 2000), the wavelets of Haar, db2, 

db3and db4 were used in this study to decompose 

the signal of groundwater level. Fig.5 shows the 

graph of these wavelets’ function. 

 

 
Figure5: Haar and Daubechies wavelets function 

 

After determining the type of the wavelet, the most 

important step is selecting the appropriate level of 

decomposition. Since the analysis process is 

iterative, in theory it can be continued indefinitely. 
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In reality, the decomposition can proceed only until 

the individual details consist of a single sample or 

pixel. It seems not rational to use the maximum 

level of decomposition in breaking up a signal. In 

practice, a suitable number of levels can be selected 

based on the nature of the signal, or according to a 

suitable criterion such as entropy. First, the 

experimental formula of INT (log n) was used to 

determine the level of optimum decomposition 

where n is the length of time series and INT stands 

for integer number and log n is common logarithm 

(Wang & Ding, 2003). In contrast to what we had 

expected, we didn’t obtain acceptable results after 

inserting the decomposed data into the neural 

network and predicting the groundwater level 

fluctuations. As a result, the data were decomposed 

up to the 3
rd

 and 4
th
 level in order to analyze the 

efficiency of the model in predicting the 

groundwater level fluctuations. Fig.6 shows a 

sample of decomposing the signal of groundwater 

with db2 wavelet up to the 3
rd

 level. 

 

 

 

 

 

 

Figure6. Groundwater level time series decomposed by db2 wavelet up to level 3, using DWT 

 

The next step is creating the artificial neural 

network. In this step, the multi-layer perceptron 

(MLP) feed forward ANN model with tansig 

activation function in hidden layer and purelin 

activation function in output layer was used to 

model the monthly groundwater level of the 

aquifer. This network accompanied by Levenberg–

Marquardt training algorithm is widely used in 

hydrogeological modeling (Daliakopoulos et al., 

2005; Sreekanth et al., 2009). The inputs of ANN 
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model are X=[D1(t), D2(t), …, Dn(t), An(t)], The 

neurons of input layer are i+1 where i is wavelet 

decomposition degree. The output is Y = [GWL 

(t+T)] where T is prediction time (in this case is 6 

month), the neuron of output layer is 1. In addition, 

the neurons of hidden layer were determined by 

trial and error and the best option was selected by 

comparing the error of different options (Fig.7). 

Another factor which was taken into account to 

choose the neurons of hidden layer was the 

simplicity of the network. In other words, the 

option with the least number of neurons was 

selected out of the two with similar output 

(Fig.7).This was implemented to prevent the 

complexity of the network. For each one of the 

inputs, the time series was divided in 3 different 

subsets. 70% of data for training the ANN (October 

1997 to September 2004), 15% for model 

validation (October 2004 to March 2006) and 15% 

for model testing (April 2006 to October 2007). 

The main framework of the model is schematically 

presented in Fig.8. 

 

 
Figure7: RMSE versus number of neuron in selected piezometers of study area 

 

 
Figure8: General schematic of the WAN 

 

The created network was trained using the training 

data set and after obtaining the appropriate results, 

the trained modal was validated by the verification 

data set. The results obtained from this model are 

presented in Table 1a and 1b for validation stage 

based on different piezometers, the type of the 

wavelet and decomposition level. As Fig. 9 shows, 

the predicted data obtained from the best model 

output in the validation stage were compared with 

the observed data. 

In general, after analyzing the results obtained from 

the model of WANN in all of the existing 

piezometers of the study area, it was found that 

preprocessing the data with the wavelets of db2 and 

db4 have provided better results in comparison with 

the wavelets of Haar and db3. The reason could be 

the similarity between the signal of groundwater 

level and the functions of mother wavelet 

(frequency similarity). In addition, decomposing 

the data up to higher levels has indicated more 

satisfactory results in most cases. This is due to the 

fact that preprocessing the data with wavelet 

analysis causes the effect of different time levels to 

be considered in predicting the fluctuations of 

groundwater level. In the abovementioned case, we 

should pay attention to the level of the optimum 

decomposition of the data which was explained 

before. 

3                              5                              7                             10 
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Test stage: 

In this step, we used groundwater level data as 

input dating back to April 2006 to October 2007. 

Using the data, we predicted the water level from 

October 2006 to April 2008. For a better and 

precise analysis, the results of model error WANN 

were compared in the test stage with the validation 

stage. The results of the comparison have been 

shown in Fig.10.Moreover, the predicted data in the 

test stage, as the validation stage, were compared 

with the genuine data. 

 

Table 1a. The results of WANN based on mother wavelet types and decomposition levels 

 

Wavelet 

 

db2 

 

db3 

 

 

2 3 4 2 3 4 

Pizo RMSE% R2% RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

p1 2.83 81.03 3.01 85.54 2.96 80.7 2.89 80.23 2.82 83.79 2.86 85.4 

p2 9.9 53.61 2.72 88.15 3.33 95.05 11.94 60.01 5.83 83.71 5.62 82.99 

p3 7.17 55.4 6.78 72.09 6.77 69.24 6.68 76.05 5.35 83.9 5.6 83.96 

p4 6.6 73.09 4.83 87.81 4.27 83.62 8.18 70.48 4.38 84.7 4.87 87.68 

p5 6.39 73.2 3.42 92.35 2.69 96.02 7.68 69.3 4.49 87.02 4.45 84.78 

p8 14.21 51.53 5.26 91.12 4.96 92.49 13.98 52.21 5.64 84.72 7.01 76.7 

p9 5.51 70.98 3.16 88.79 3.36 85.07 6.04 72.16 3.93 84.06 3.49 87.87 

p10 12.27 62.53 10.71 58.21 9.54 55.6 12.54 58.8 9.78 64.2 9.96 67.76 

p11 8.24 64.63 2.61 96.27 3 94.98 8.27 64.11 4.1 87.94 3.25 91.98 

p12 13.88 50.73 5.96 87.44 1.59 98.78 15.85 58.64 4.75 88.88 2.91 96.05 

p13 6.79 80.14 3.49 94.71 2.08 98.11 12.72 54.67 5.29 85.91 3.07 95.35 

p14 13.89 62.68 4.37 93.1 2.92 96.58 16.94 50.6 5.99 87.76 3.48 95.52 

p15 7.65 71.18 4.84 89.61 4.84 87.2 10.45 53.71 5.45 84.9 4.21 91.82 

p16 2.03 90.06 2.63 87.93 2.59 90.75 2.32 88.65 2.47 91.98 2.23 91.96 

p17 4.8 75.52 3.72 87.81 2.8 89.63 5.41 77.38 3.41 82.85 4.45 85.07 

p18 13.93 62.72 10.06 79.46 6.77 84.75 10.95 61.72 5.36 89.59 6.84 87.13 

p19 21.35 52.42 5.62 92.96 6.56 90.12 19.97 52.45 11.79 71.7 5.76 92.23 

p20 7.15 71.38 5.76 72.14 5.91 74.02 7.01 75.91 5.82 67.79 5.9 71.25 

p21 6.66 76.44 3.25 93.69 3.54 89.77 5.58 77.02 3.21 91.15 3.23 90.92 

p22 2.07 96.06 1.89 96.1 1.55 97.79 2.16 95.27 1.23 98.61 1.27 98.34 

p23 3.74 86.26 2.39 94.89 3.12 91.79 3.1 88.03 3.17 89.13 3.13 89.28 

p24 8.62 75.56 3.8 90.18 3.12 94.25 8.95 54.63 4.29 87.6 3.5 93.42 

p25 5.14 80.97 1.85 96.62 1.67 96.76 9.57 60.81 2.95 89.62 1.48 97.1 

p26 22.3 51.09 6.89 81.87 8.75 78.67 15.68 40.66 10.96 71.51 7.08 81.48 

p27 4.35 81.97 4.14 92.12 4.43 85.51 3.93 80.68 2.47 93.72 2.86 93.12 

p28 7.66 73.79 3.25 94.79 4.47 89.17 6.9 66.81 6.77 70.79 4.5 87.23 

 

Table 1b: The results of WANN based on mother wavelet types and decomposition levels 

 

Wavelet 

 

db4 

 

Haar 

 

2 3 4 3 4 

pizo RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

p1 2.99 83.62 2.79 82.33 2.91 82.28 2.99 85.81 3.11 83.71 

p2 12.07 62.04 5.62 89.05 4.87 91.11 6.63 81.62 6.86 79.6 

p3 8 59.58 8.44 71.63 7.38 73.46 6.94 76.01 7.73 71.25 

p4 7.25 72.03 5.99 83.02 5.62 82.96 5.68 77.44 5.45 85.9 

p5 8.03 57.27 2.69 96.23 2.36 96.83 5.32 76.49 3.39 92.66 

p8 15.22 53.01 5.94 86.44 4.44 93.8 11.81 54.26 7.81 75.6 

p9 5.24 70.01 3.98 83 2.89 91.8 4.77 78.07 3.35 82.6 

p10 11.08 63.59 11.17 51.8 8.51 78.53 9.66 65.58 7.59 71.07 

p11 7.38 69.9 2.93 94.18 2.36 96.45 4.56 89.26 4.47 87.9 

p12 11.09 63.93 4.31 92.99 3.33 95.18 3.3 95.05 2.65 97.15 

p13 12.56 55.37 4.67 90.14 4.38 90.96 5.26 87.55 4.77 91.77 

p14 11.73 61.4 4.29 93.15 3.93 94.55 5.39 90.13 5.57 89.96 

p15 10.78 55.81 5.09 86.39 4.79 88.43 6.38 83.31 5.54 81.87 

p16 2.82 91.6 2.99 89.75 2.76 88.56 3.44 80.68 1.36 96 

p17 4.83 79 3.7 85.2 2.84 88.81 3.83 85.16 3.14 86.65 

p18 10.88 72.72 7.25 85.14 2.23 92.66 13.29 66.08 10.77 78.07 

p19 19.68 49.23 7.47 88.24 6.31 92.23 13.62 66.42 8.03 83.27 

p20 6.98 69.88 5.6 63.03 6.46 69.93 6.66 72.52 5.93 66.6 

p21 5.99 75.95 3.78 88.4 2.98 93.51 4.47 82.74 4.57 87.07 

p22 1.98 96.46 1.53 97.61 1.88 96.77 2.1 96.07 2.06 95.43 

p23 3.74 84.04 2.89 89.96 3.25 90.9 3.87 85.01 3.62 86.11 

p24 9.85 60.7 3.62 91.11 4.78 85.65 4.88 89.14 3.77 90.06 

p25 4.94 77.59 1.39 97.98 1.48 97.41 3.17 86.89 2.34 93.52 

p26 15.07 54.68 11.78 72.82 7.79 85.2 13.62 66.49 13.05 64.13 

p27 3.99 70.12 2.89 91.09 4.22 83.25 12.07 74.76 3.58 87.88 

p28 6.64 55.75 4.59 86.21 4.34 85.54 6.96 67.46 6.08 68.56 
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Figure9: Comparison of forecasted versus observed groundwater level at selected piezometers using the best WANN model for Six-

month ahead forecasting in validation stage. 

 



88 Nakhaei & Saberi Nasr        JGeope, 2 (2), 2012 

 

 
Figure9. (Continued) 

 

 
Figure10: Comparison of WANN model error results in test stage and validation stage 

 

The results obtained from WANN model for each 

piezometer indicated that if they are able to be 

trained with the least error and have a high 

correlation in the training stage, they can produce 

appropriate results. These models predicted the 

water level in all piezometers satisfactorily and can 

be thus considered as a suitable alternative for 

numerical models in predicting the fluctuations of 

groundwater level Fig.11 shows the observed 

values of water level fluctuations in some of the 

piezometers and its comparison with the values 

computed by WANN at test stage. 
 

 
Figure 11. Comparison of forecasted versus observed groundwater level at selected piezometers using the best WANN model for Six-

month ahead forecasting in test stage. 
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Figure 11. (Continued) 
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Figure 11. (Continued) 

 

Conclusion 

In this study, the discrete wavelet transform, which 

can capture the multi-scale features of signals, was 

used to decompose the Qorveh groundwater level 

time series. The sub-signals were then used as input 

to the ANN model to predict the groundwater level 

six months ahead. The discrete wavelet transform 

allowed most of the ‘noisy’ data to be removed and 

it facilitated the extraction of quasi-periodic and 

periodic signals in the original data time series. 

Although the previous studies had shown that this 

combined model was much precise than classic 

models such as ANN and ARIMA (Wang & Ding, 

2003; Adamowski & Chan, 2011), the current study 

shows that specifying the mother wavelet and 

optimum decomposed level both lead to much more 

precise results. The effect of mother wavelet type 

on the model performance was investigated using 

four different kinds of mother wavelet. The results 

obtained from the model show low merits of Haar 

and db3 wavelets in comparison with db2 and db4 

because of dissimilarity between the signal of 

groundwater level and the functions of mother 

wavelet. 

Moreover, the obtained results from the current 

study were not in line with studies carried out by 

Nourani et al., 2009 and Wang & Ding, 2003 who 

argued that to determine the optimum decomposed 

level entails using INT (log n) experimental 

formula. They had claimed that an optimum level 

can be chosen on the basis of the signal length. But 

the current study, against our expectations, didn’t 

lead to appropriate results in using the formula 

applied in the current model. 
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