
تعداد نشریات | 162 |
تعداد شمارهها | 6,677 |
تعداد مقالات | 71,947 |
تعداد مشاهده مقاله | 128,719,734 |
تعداد دریافت فایل اصل مقاله | 101,549,106 |
A Hybrid Neural Networks-Coevolution Genetic Algorithm for Multi Variables Robust Design Problem in Quality Engineering | ||
Journal of Information Technology Management | ||
مقاله 8، دوره 1، شماره 1، خرداد 2009 اصل مقاله (219.49 K) | ||
نویسندگان | ||
mohammad reza mehrgan؛ Ali Reza Farasat* | ||
چکیده | ||
In this study, a hybrid algorithm is presented to tackle multi-variables robust design problem. The proposed algorithm comprises neural networks (NNs) and co-evolution genetic algorithm (CGA) in which neural networks are as a function approximation tool used to estimate a map between process variables. Furthermore, in order to make a robust optimization of response variables, co-evolution algorithm is applied to solve constructed model of process. Results of CGA are compared with genetic algorithm (GA). This algorithm is tested in a case study of open-end spinning process. | ||
کلیدواژهها | ||
Co evolution Genetic Algorithm؛ Genetic algorithm؛ neural networks؛ Quality Engineering؛ Robust optimization | ||
آمار تعداد مشاهده مقاله: 3,532 تعداد دریافت فایل اصل مقاله: 2,722 |