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Zhang, H. H .1,  Zeng, Y. N.1* and Bian, L. 2

1School of Info-Physics and Geomatics Engineering & Research Center of Space Info-Technique
and Sustainable Development, Central South University, Changsha 410083, China

2Department of Geography, University at Buffalo, State University of New York, NY 14261, USA

ABSTRACT: In this study, under the constraint of resource-saving and environment-friendliness objective,
based on multi-agent genetic algorithm, multi-objective spatial optimization (MOSO) model for land use
allocation was developed from the view of simulating the biological autonomous adaptability to environment
and the competitive-cooperative relationship. The model was applied to solve the practical multi-objective
spatial optimization allocation problems of land use in the core region of Changsha, Zhuzhou, Xiangttan city
cluster in China. The results has indicated that MOSO model has much better performance than GA for solving
complex multi-objective spatial optimization allocation problems and it is a promising method for generating
land use alternatives for further consideration in spatial decision-making.
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INTRTODUCTION
Nowadays, the rapid socio-economic development

has produced enormous material interests, however,
the unreasonable land use allocation has also led to a
series of serious resource and environment problems,
and affected seriously sustainable land use (Verburg,
et al., 1999; Peng, et al., 2006; Li and Liu, 2008). Thus,
developing a spatial optimization allocation model of
regional land use will have important significance to
scientific planning and rational management of land
use. Owing to multifaceted nature of land use allocation,
spatial optimization allocation model should aim at
finding a set of high-performing alternatives instead of
just one solution (Duh and Brown, 2007; Xiao, et al.,
2007; Zhang and Armstrong, 2008; Ligmann-Zielinska,
et al., 2008). As a type of general global optimization
algorithm, genetic algorithm (GA) has been widely used
for numerical optimization, combinatorial optimization
and travelling salesman problems. And many
researchers have been trying to apply this method to
solve the multi-objective land use allocation problems
quantitatively (Feng and Lin, 1999; Balling, et al., 1999;
Matthews, 2001; Xiao, et al., 2002; Stewart, et al., 2004;
Holzkamper and Seppelt, 2007; Janssen, et al., 2008).
All the above studies indicate that GA is effective in
solving multi-objective spatial optimization allocation

problems of land use. However, the main problem of
GA is that it may be trapped in the local optima of
objective functions when the optimization problems
are too complicated. And it’s more possible to obtain
local optimal solutions and increase convergence time
with increase of the complexity of problems and search
space of algorithms. In the meantime, it is difficult to
incorporate human and social factors in GA. Therefore,
it’s necessary to develop more intelligent algorithms
for the solution of multi-objective spatial optimization
allocation problems of land use.

Artificial life methods inspired by complexity
science has witnessed a significant development and
been applied extensively (Chebeane and Echalier, 1999;
Liu, et al., 1997). As one of these methods, multi-agent
system has been successfully applied to build dynamic
representations of geographical systems (Parker, et
al., 2003; Manson, 2005, 2006; Evans, et al., 2006;
Evans and Kelley, 2008; Brown, et al., 2005, 2008; Brown
and Xie, 2006; Xie and Batty, 2007), especially in
representing spatial allocation of land use (Benenson,
1998; Arentze and Timmermans, 2003; Saarloos, et al.,
2005; Li and Liu, 2007, 2008). The multi-agent system
has a cell structure which can make each agent achieve
optimization in its neighborhood areas respectively
instead of in the whole system to ensure the population
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diversity. This enables it to avoid being trapped in the
local optima of the objective functions, which is very
helpful when applying GA to solve multi-objective
optimization issues (Cardon, et al., 2000; Cao, et al.,
2007). As a consequence, compared with application
of GA alone, the integration of multi-agent system and
GA can give rise to better solutions for multi-objective
spatial optimization allocation of land use. There are
as yet no published studies on the integration of both
techniques as an assistant decision-making tool for
implementing the initiative of sustainable land use. In
this study, MOSO model, which includes four
evolutionary operators for land use allocation, was
developed from the view of simulating the biological
autonomous adaptability to environment and the
competitive-cooperative relationship. The model was
applied to the solution of the practical multi-objective
spatial optimization allocation problems of land use in
the core area of Changsha, Zhuzhou, Xiangttan city
cluster in China, where land use in urban areas is
characterized by inefficient low-density and extensive
patterns (Yeh and Li, 1999; Liu, et al., 2006, 2008). The
simulation results have indicated that the model can
produce satisfactory optimized results.

MATERIALS & METHODS
Spatial optimization allocation of land use should

not only take saving land resource by the greatest
degree and increasing the utilizing efficiency into
consideration, but also take improving the
environmental benignity of adjacent land uses as much
as possible into consideration. Thus, in this study, the
general objective of MOSO model is resource-saving
and environment-friendliness. In order to enhance
model’s operability, referring to Ligmann-Zielinska, et
al., (2008), we set corresponding sub-objectives and
constraints for resource-saving and environment-
friendliness objectives respectively, which are
described as follows:
Resource-saving objective:

Minimize ∑∑
∈Uj m
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Some notations:
j  1, 2, …, n; cell locations.
n   Total number of cells in the study area.

ml,  1, 2, … k; types of land uses.

k   Total number of land use type.
u   Undeveloped land use.

U   Set of cells of undeveloped land.

D   Set of developed cells; all subsets of D are
        mutually disjoint.

jB  Set of j’s neighbors that are undeveloped.

je
  Existing land use of cell j.

lmc  Estimated compatibility index between land uses

         l and m. in the model, l is represented by jd .

jd   Dominant urban land use type within the
        neighborhood of cell j.

js   Number of initially developed cells within j’ss
        neighborhood.

jdist   Distance of location j to its nearest
             developed area (in cells).

lmp     Cost of changing land use l to m.
b      Minimum required number of neighbor cells that
         are developed after allocation.
Variables:

jumx     =1, if undeveloped land at location j is changed
             to m; and 0 otherwise.

mje j
x

    =1, if current land use ej at location j is changed

              to m; where jem ≠ , and 0 otherwise.

jkx
       =1, if type of land use at location j is changed;

and 0 otherwise.
Objective (1) and (2) are resource-saving objectives.
Objective (1) minimizes the distance of new
development to already developed sites, in order to
shift the low-density and extensive pattern of land use
to intensive pattern and improve the efficiency of land
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use; Objective (2) minimizes the total cost of land use
conversion. Objective (3) is environment-friendliness
objective, minimizing the environmental
incompatibilities between cell j and its neighbors in
order to promote the development of environment-
friendly land use pattern. Constraints (4) and (5)
guarantee that only one type of land use is allocated
to cell j; Constraint (6) ensures connectivity and
compactness of land use, guaranteeing that the number
of initially developed cells within j’s neighborhood is
no less than b, which makes the undeveloped land use
inside the urban areas be allocated.
Zhong, et al., (2004) combined multi-agent system with
genetic algorithm to form a new algorithm, multi agent
genetic algorithm (MAGA), to solve global optimization
problems (Zhong, et al., 2004). This algorithm inspired
by multi-agent system overcomes the limitation of
computation time to some extent, so we try to use
MAGA to provide solutions for multi-objective spatial
optimization allocation of land use in MOSO model.
However, it is worth while to note that there exist many
different types of agent in the course of multi-objective
spatial optimization allocation of land use, such as
resident agents, peasant agents, compared with the
fact that all agents in MAGA are the same type.
Moreover, the structure of agent in MAGA is too
simple to describe complex rule and behavior of agents
participating in spatial optimization allocation of land
use, and the value of agents’ energy can not be simply
measured with the negative value of the objective
function because of the characteristic of multi-
objective in the course of spatial optimization
allocation of land use. Consequently, the MAGA must
be modified in order to make MAGA with the ability to
solve problems of multi-objective spatial optimization
allocation. In this study, the modified MAGA is named
M-MAGA. In M-MAGA, all agents exist in a cell-like
environment, L , which is called an agent cell. The
size of L  is Lsize * Lsize  , where Lsize  is an integer. Within
the cell environment, each individual is considered as
an agent with energies, adaptabilities and behaviors,
and different types of agents have different behaviors.
Energy level of agents can be represented by fitness
value that is obtained by fitness function transformed
from the objective functions. In M-MAGA, an agent is
considered as an entity that can essentially sense and
react on the environmentÿand the structure of agent
exerts a great influence on fitness function. According
to characteristics of agent in the course of land use
spatial decision, the structure of agent can be defined
as follow:
Agent =<type, decision variable, decision parameter,
fitness>                                                                          (8)
As can be seen, structure of agent in M-MAGA
includes four properties. Type refers to all kind of agents

taking part in the spatial allocation of land use, such
as residents and enterprisers, etc; decision variable
and parameter represent the selected decision factors
by agents and their weights respectively; fitness refers
to the adaptability, which is determined by agent’s
competitiveness. Different types of agents have
different decision variables and decision parameters.
In MOSO model, agents compete and cooperate with
others, achieving the evolution of each generation
through crossover, mutation, death and self-learning
operation. Four evolutionary operators, including
neighborhood competition operator, neighborhood
crossover operator, mutation operator and self-learning
operator, are designed to simulate agents’ evolutionary
behaviors. In these operators, energy of agents
changes with the evolutionary behavior of agents. In
order to make computation more convenient, we use
equation (9) to represent agents’ main properties on
which the evolutionary operators are performed. Type,
decision variable and fitness are input to the operators
in the terms of additional properties, not participating
in actual computation, but the fitness value changes
with the decision parameter.

                                                                      (9)

In formula (9), Li,j  represents the agent located at cell
(i, j); l1, l2,...ln represent the decision parameters of
corresponding decision variables chosen by agents
respectively; n is the number of decision variables.
Different to MAGA, neighborhood competition behav-
iors include internal competition and external competi-
tion in M-MAGA. Internal competition behaviors oc-
curred on agents with the same type, and external com-
petition behaviors occurred on agents with different
types. Suppose that neighborhood competition op-

erator is performed on the agent ),...,,( 21, nji lllL = ,

),...,,( 21, nji mmmMax =  is the agent with maximum

energy among the neighbors of jiL , . If Energy
(Li,j)>Energy (Maxi,j), can can still live in the agent lat-
tice; it dies otherwise, and the cell-point will be occu-
pied by Maxi,j. If agent type of  Maxi,j is the same as Li,j,
Maxi,jwill generate a new agent agent

),...,,( 21, nji eeeNew = , then Newi,j is put on the cell-
point, as can be seen in formula (10). If agent type of
Maxi,j is not the same as Li,j, Maxi,j is first mapped onto
[0,1] according to formula (11), then

)',...,','(' 21, nji eeeNew =  is determined by formula (12),

finally Newi,j is obtained by mapping ', jiNew  back to

],[ kk xx  according to formula (13).

),...,,( 21, nji lllL =
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In formula (10), )1,1(−U  is random number on (-1,1),

],[ kk xx  is the search space.
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Neighborhood crossover operator is used to simulate
the cooperation behavior of agents. Compared with
neighborhood crossover operator in MAGA, the neigh-
borhood crossover operator in M-MAGA takes ad-
vantage of elitist strategy in order to make population
evolve to the best solutions more quickly and reduce
the unnecessary random degradation. Although this
strategy will cause the reduction of population diver-
sity to some extent, it can be compensated by mutation
operator. In the neighborhood of Li,j, if agent type of
Maxi,j is the same as Li,j, this operator is performed on
Li,j, and  Maxi,j to achieve the purpose of cooperation.
In this process, neighborhood crossover operator gen-
erates two new agents, one of which with larger fit-
ness survives. This kind of process takes place for m
(m <5) times. Finally, the agent Max with maximum en-
ergy is selected to replaceLi,j, if Energy(Max) >
Energy(Li,j,); no replacement otherwise.
As a result of some sudden factors, the decision pa-
rameters of agent in the course of land use spatial op-
timization decision may mutate. Therefore, we use mu-
tation operator to express this situation. Different to
MAGA, the interchange mutation operator is taken to
describe agents’ mutation behaviors in order to im-
prove efficiency of algorithm in M-MAGA. In inter-
change mutation operator, after randomly choosing two

positions in agent Li,j, new agent ),...,,(' 21, nji bbbL =  is

generated from agent ),...,,( 21, nji lllL =  through inter-
changing corresponding parameters in these two
positions. The concrete operation is described as follow:
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Where n,...,1k = , )1,0(U  is random number on (0,1),

mP  is mutation probability.The self-learning operator
can be considered as a small scale M-MAGA, being
performed on the best agent in each generation to
simulate the behavior of self-learning to improve its
own energy. The operator in M-MAGA is the same as
MAGA, and for more details, see Leung and Wang, et
al., (2001). In M-MAGA, all agents of the population
are ranked with the priority method according to their
fitness to each objective function, and then getting
the total fitness. ),...,2,1)(( niiZ =  represents the
objective function and n  is the number of objectives.

For each objective, agent jX ( Nj ,...,2,1= ) will form
a collating sequence Y according to the magnitude of

the objective function values of )( ji XZ . For objective

i, fitness of agent jX  is calculated according to,
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In the formula, N is the total number of agents; jX  is

the jth agent in the population; iY  refers to jX ’s serial

number in the collating sequence Y( jX );  represents’ss

fitness for objective i. Total fitness of agent  jX (j=1,
2, ...,N) will be obtained according to,
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Where n is the total number of the objective func-

tions; )( jXFit  is jX ’s total fitness for all objectives.
It’s self-evident that those agents with higher total fit-
ness value can obtain lager fitness, which makes agents
enjoy more opportunities of evolution.
In order to keep the diversity of the population and
avoid genetic drift, the niche technology based on
sharing mechanism is introduced to decrease the
replication of similar individuals. The radius of ecological

niche ( shareσ ) can be determined by formula (17).
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In formula (17), n is the total number of the objective
functions; N is the total number of agents.

After sharing with other agents, )( jXFit , total fitness
of agent Xj, is obtained by formula (18).
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In formula (18), )( jXFits  is total fitness of jX  to all

objectives after its sharing, ),( kj XXs  is agents’ shar-
ing coefficient which can be calculated through for-
mula (19), where kX  stands for the kth agent and N
total number of agents
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In formula (19), the denotation of shareσ  is the same as

that in formula (17) and d  is shared searching radius
which can be calculated through formula (20).
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In the formula, n is total number of objective function

and denotation of )( ji XF  and )( ki XF  is the same as
that in (15).
During the course of spatial optimization allocation of
land use, agent cell’s suitability to expected land use
objective of agent located at this cell has certain effect
on the agent’s total fitness. Taken such effect into
consideration, an agent’s total fitness is determined
by,

)()()( *
jjj XPXFitskXFits ⋅⋅=                  (21)

In the formula (21), k is a constant on [1, 2], )( jXP

representing agent jX ’s decision satisfaction to
suitability of the cell can be calculated by formula (22).
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In the formula (22), l  represents number of decision

variables; kw  represents decision weight; kf  repre-
sents decision parameter of corresponding decision
variable.

RESULTS & DISCUSSION
Changsha, Zhuzhou, Xiangttan city cluster is

located at Hunan province in central China, which is a
national comprehensive reform test area to build the
resource-saving and environment-friendliness society
(henceforth two-oriented-society). According to the
requirement of two-oriented-society, land use in the
test area should meet the dual objectives of saving
land resource and pursuing a friendly environment,
therefore, a fast spatial optimization allocation
mechanism of land use are needed. Based on the above
objectives, therefore, we select the core part of the
city cluster--Changsha city to do empirical research
on multi-objective spatial optimization allocation of land
use using MOSO model.

The data for the application includes remote
sensing data, GIS data, social and economical statistics,
environmental statistics, etc. Remote sensing data
include TM data of the year 2005; GIS data include
land use map in 2005, general land use planning of
Changsha city (1997-2010), general urban planning of
Changsha city (2003-2020), transportation map, and
public facilities map, land price map, as well as digital
elevation model. Social-economical statistics are
mainly consisted of Changsha population statistics as
well as income statistics of urban residents from 1993
to 2005. Environmental statistics include public reports
on environment quality and environment quality
statistical yearbook of Changsha from 2000 to 2005.

Current land use in the study area was generalized
into such main five types as residential land, commercial
land, industrial land, undeveloped land, as well as
restricted land (including hill, water, greenland areas),
and the size of land use cell is defined as 30m×30m.
3×3 neighborhood structure is used for the model, and
parameter b- minimum required number of neighbor
cells that are developed after allocation-as 3. According
to presupposition, every land use cell in this model
only can be assigned an agent. Based on the ratio of
population to land area from 1993 to 2005, demand of
residential land, commercial land as well as industrial
land in 2010 were obtained with GM(1,1) model, which
are separately 69.42045.85030.39 km2. And based on
this, the number of resident agents, industrial agents
as well as commercial agents can be determined in 2010.
One thing to add is that an agent here represents the
average population or number of enterprises
accommodated in a 30m×30m cell. After that, these
agents were stochastically allocated to corresponding
land use cell in 2005 according to their types. What are
generated in this step are the model’s parent generation
individuals, namely, initial solution of the model. In
this study, three types of agents were defined which
are separately resident agents, commercial enterprise
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agents as well as industrial enterprise agents.
Meanwhile, to demonstrate the internal heterogeneity
and diversity of agents of the same type in the course
of decision-making, we categorized resident agents into
three subgroups, the low-income class (income < 12,000
RMB/year), the middle-income class (12,000 RMB/year
< income < 50,000 RMB/year), and the high-income
class (income > 50,000 RMB/year), industrial
enterprises into two subgroups, the environment
pollution class and pro-environmental class according
to pro-environment level and commercial enterprise into
two subgroups, the department stores class and retail
outlets class according to their size. Decision variables
and decision parameters vary with agent type. In this
study, resident agents’ main decision behavior is
selection of appropriate location for residence, and that
of enterprise is selection of appropriate location for its
expansion. Slope, land price, environmental value,
transportation accessibility, planning completeness

Table 1. Agents’ decision variable and decision parameters

Agents’ decision parameters 
Resident Agents Industrial enterprise Agents Commercial enterprise Agents 

Agents’ 
Decision 
variable High- 

income 
Middle- 
income 

Low- 
income 

pro-environ- 
mental 

environment 
pollution 

Department 
store 

Retail 
outlet 

S 0.113 0.082 0.051 0.124 0.112 0.112 0.135 
L 0.149 0.209 0.343 0.225 0.251 0.201 0.261 
E 0.315 0.243 0.114 － － 0.087 0.054 
P 0.180 0.194 0.157 0.129 0.154 0.133 0.096 
T 0.243 0.272 0.335 0.286 0.270 0.244 0.299 
I － － － 0.236 0.213 0.223 0.155 

Notations: S, Slope; L, land price; E, environmental value; T, transportation accessibility; P, planning completeness level; I,
industrial agglomeration level.

level as well as industrial agglomeration level are
provided for agents to choose as decision variables.
The choices of various agents are demonstrated in
Table 1 with decision parameters obtained through
AHP method. With reference to Table 1 and formula
(22), P(Xj) can be determined. The calculation of fitness
follows the approach described in formula (21). During
the course of these calculation, function value of
objective (1) was obtained by calculating the distance
from agent cell to its nearest developed land use cell,
function value of objective (2) according to
development cost of land use conversion, the standard
of which was demonstrated in Table 2, and function
value of objective (3) from sum of environmental
compatibility between agent cells within the 3×3
neighborhood area. Environmental compatibility
between various land use types was represented in
Table 3. The flow of performing evolutionary operators
is represented as Fig.1.

 Industrial land Residential land Commercial land 
Industrial land － 0.20 0.20 
Residential land 0.90 － 0.90 
Commercial land 0.45 0.45 － 
Undeveloped land 1.80 1.80 1. 80 

Table 2. Standard of land development cost of land use conversion (unit: 10,000 RMB per cell)

Table 3. Environmental compatibility between adjacent land use types

 Undeveloped 
 land 

Restricted 
 land 

Residential 
 land 

Commercial 
 land 

Industrial 
 land 

Undeveloped land 1.0 1.0 1.0 1.0 1.0 
Restricted land 1.0 1.0 1.0 0.5 0.0 
Residential land 1.0 1.0 1.0 0.7 0.0 
Commercial land 1.0 0.5 0.7 1.0 0.2 
Industrial land 1.0 0.0 0.0 0.2 1.0 

Note: environmental compatibility ranges from 0.0 to 1.0; 0.0 means incompatibility and compatibility increases with the value.
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Fig. 1. Flow chart of performing evolutionary operators

Note: In the Figure, tL  represents the agent cell in the

tth generation, and 1mid
tL  and 2mid

tL  are the mid-cells
between Lt and Lt+1. Best(t) is the best agent among L0,
L1, …,Lt , and CBest(t) is the best agent in Lt.  and Pm are
the probabilities to perform the neighborhood
crossover operator and the mutation operator.

Fig.2 represents the simulation results of land use
optimization allocation during the different runtime of
the model, in which T=0 stands for the model’ initial
state and T=400 stands for the 400th iteration. The
ultimate spatial optimization allocation results in 2010
is shown in Fig 3(b). Compared with spatial pattern of
land use in 2005 before optimization (Fig 3(a)), it’s
obvious that spatial pattern of land use after
optimization is denser and more compact, and a notable
decrease of vacant land inside land patches and spot

land use patches in suburb area can be observed. In
addition, it is also observed that space agglomeration
level of the same land use type is higher, and that main
expansion pattern of newly-increased urban land is
internal filling with avoidance of overexpansion of
urban land.

Model validation is usually required when
optimization models are applied to the simulation of
land use optimization allocation. In this study, the
proposed model was assessed in two ways: (1)
comparing the optimized patterns with land use
patterns before optimization; (2) comparing the
simulated optimized patterns between MOSO model
and the standard GA.

In combination with objective functions of the
model, the quantitative assessment was carried out
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Fig. 2. Simulation of land use optimization allocation in Changsha in 2005–2010

Fig. 3. Comparison of spatial patterns of land use before and after spatial optimization. (a) spatial patterns
before spatial optimization; (b) spatial patterns after spatial optimization.

by using some landscape metrics, which are mainly
used to measure overall compactness of a certain land
use patch, namely, land resource saving degree. These
landscape metrics include Mean Patch Fractal

Dimension (MPFD), Mean Euclidean Nearest-Neighbor
Distance (MNN), and Aggregation Index (AI)
(McGarigal, et al., 2002). They are obtained by using a
landscape analysis software, FRAGSTATS 3.3
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(McGarigal, et al., 2002). In addition, environmental
compatibility index (EC) is employed to assess environ-
mental friendliness level of land use patch. EC is

illustrated in the following formula in which ie  stands

for patch i ’s environmental compatibility with its land
use cells within neighbor area and n stands for number
of patches.

n

e
EC

n

i
i∑

== 1         (23)

Table 4 shows the assessment of spatial patterns of
resident land, industrial land as well as commercial land
before and after optimization. It is observed from the
table that values of MPFD, MNN of each land use
type is lower after optimization while those of AI and

EI are higher, which proves that spatial patterns of
land use has notably improved in patch adjacency,
connectivity, aggregation, compactness as well as
environmental compatibility after optimization and
subsequently verifies that overall resource-saving and
environment-friendliness level of optimized allocation
results is higher than that of before optimization. To
further  validate the model’s feasibility, the
performances of MOSO model were compared with
those from the standard GA on the basis of the same
objective functions (Fig.4 and Fig.5). It is observed
from Fig.4 that spatial patterns of land use generated
through MOSO model is more regular and compact
than that generated through standard GA. Meanwhile
it is observed from Fig.5 that, for the same study area,
that total fitness values obtained through the standard
GA and MOSO model are separately 14.88 and 16.75,
which reflects an increase of 12.57% in total fitness
values of MOSO model than the standard GA model.

Fig. 4. Comparison of optimized allocation results. (a) using the standard GA model; (b) using MOSO model

Table 4. Assessment of spatial patterns before and after optimization

 MPFD MNN AI EI 
Resident land 1.127 145.321 65.876 0.642 
Industrial land 1.438 169.245 38.214 0.677. A (before optimization) 

Commercial land 1.267 149.687 57.929 0.708 
Resident land 1.006 132.514 70.381 0.771 
Industrial land 1.349 155.455 45.112 0.734 B (after optimization) 

Commercial land 1.105 138.663 68.475 0.769 
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Fig. 5. Comparison of convergence curves. (a) convergence curve of MOSO model; (b) convergence curve of
the standard GA.

 MPFD MNN AI EI 
Resident land 1.008 140.976 66.803 0.689 
Industrial land 1.412 158.74 40.257 0.694 
Commercial land 1.208 141.53 60.445 0.723 

Table 5. Assessment of optimized spatial patterns produced from the standard GA model using landscape metrics

In addition, assessment of optimized spatial patterns
of land use produced from the standard GA model using
landscape metrics is shown in Table 5. By comparing
Table 5 with Table 4(b), it is obvious that MPFD, MNN
of each land use type in Table 5 are higher than those
in Table 4(b), which proves that optimized allocation
results obtained from MOSO model is more superior
than that from the standard GA model in overall
resource-saving and environmental-friendliness level.
This is because the behavior of various players in the
actual world can be well addressed based on agent-
based approach. In additionÿiteration time of MOSO
model and standard GA model are separately 3.31 hours
and 8.57 hours, which reflects an improvement of
61.38% in running efficiency of MOSO model than the
standard GA model and proves a faster convergence
rate of MOSO model than that of standard GA model.
All the observations above together indicated MOSO
model is a promising method for generating land use
alternatives for further consideration in spatial
decision-making.

CONCLUSION
The technique of spatial optimization allocation of

land use is important for government and land use
planners to formulate sustainable land development
strategies. The complexity, and indeed the multi-
objective, of land use spatial optimization allocation
problems has been widely recognized (Balling, et al.,
1999; Stewart, et al., 2004; Holzkamper and Seppelt,

2007; Janssen, et al., 2008). In this study, under the
constraints of general objective of resource-saving and
environment-friendliness, based on multi-agent genetic
algorithm, MOSO model of land use allocation was
developed from the view of simulating the biological
autonomous adaptability to environment and their
competitive and cooperative relation. In the model,
corresponding sub-objectives and constraints
according to resource-saving and environment-
friendliness objectives were set; structure and
evolutionary operators of agents were designed based
on multi-agent genetic algorithm; and the niche
technology based on sharing mechanism was
introduced to calculate fitness of agents. Changsha
city was selected for testing this proposed model. The
proposed model includes three types of agents-
resident agents, industr ial enterprise agents,
commercial enterprise agents. Different types of agents
can compete and cooperate with each other in the
course of spatial optimized allocation of land use and
different types of agents have different decision
variables. The experiment has indicated that optimized
spatial patterns of land use can be simulated based on
MOSO model. By comparing landscape metrics of
spatial patterns of land use before and after
optimization, the validation was carried out. The
analysis has indicated that the model can produce
satisfactory optimized results and the overall resource-
saving and environment-friendliness level of land use
allocation results were improved after optimization.
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This model also performed better than the standard
GA models in simulating spatial optimization allocation
of land use in the study area. This is because the
behavior of various players in actual world can be well
addressed by the agent-based approach. Extensive
conversions and quick changes in urban land use took
place in Chinese cities. Consequently, it is urgent to
form sustainable land use pattern using techniques of
spatial optimization allocation. Spatial optimization
allocation of land use is an intricate process of multi-
objective decision behavior. Although the objective
of resource-saving and environmental friendliness has
been taken into consideration in this study, more and
more complex objectives such as policy and resource
constraints are possible ones in need of consideration
in the course of spatial optimization allocation.
Therefore, in the actual application of the model,
objective systems should vary with real situations
according the principle of adaptation to local
conditions. In addition, uncertainties from models such
as scales and neighborhood structures will also affect
the application of these agent-based models, which
will be explored in further studies.
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